

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Asset attributes and portfolio choice: Implications for capital asset prices

Ramezani, Ahmad, Ph.D.

University of California, Berkeley, 1991

Asset Attributes and Portfolio Choice: Implications for Capital Asset Prices

By
Ahmad Ramezani
B.A. (University of California at Santa Cruz) 1984

MS. (University of California at Santa Cruz) 1988
M.S. (University of California at Berkeley) 1991

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY
in
AGRICULTURAL AND RESOURCE ECONOMICS
in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Asset Attributes and Portfolio Choice: Implications for Capital Asset Prices

By
Ahmad Ramezani

Abstract

A large body of empirical literature in agricultural economics, marketing, and other branches of economics indicates that the qualitative characteristics of goods critically influence consumption decisions. In the literature of financial economics, assets' rate of return and the parameters characterizing their probability distribution have been viewed as the primary attributes affecting portfolio choice decisions. This seems to be a narrow view of the demand for financial assets and there are reasons to expect that other asset characteristics may influence investors' decisions. The aim of this dissertation is to assess this conjecture.

An important justification for the relevance to investors' decisions of a variety of asset attributes comes from existing management compensation schemes, which provide incentives for firm managers to strategically manipulate indicators of a firm's financial performance. Rational investors anticipating such behavior would examine a variety of signals when selecting their portfolios. In chapter two, I construct a general portfolio selection model embodying this type of investor behavior and study the influence of the qualitative attributes of assets on individuals' investment decisions and, consequently, on the market prices of capital assets.

The framework proposed assumes that, in addition to consumption, investors derive utility from the characteristics of their portfolio, which may include the mean and variance of returns. The model has a number of original features. First, a distinction between attributes common to all assets and unique characteristics of assets is made. Hence in conizidering the atocks of two otherwive identical firms, investora may choose, for example, the stock of the firm that purporta to be environmentally reaponsible. Second, the model allows for differing investment horizons, so that while some investors' portfolio choice may be influenced by contumption in the diatant future, others may be concerned with only their current consumption. Third, an equilibrium relationship between asset prices and their attributes is established. The implicit value associated with each attribute may be inferred from this relationship.

Uncertainty regarding the assets' attributes is integrated into the analysis in the third chapter. In a single period setting, I first study investor behavior in the presence of multivariate risk, which is due to randomness of the attributes. I then discuss both risk aversion and stochastic dominance measures that are appropriate for this setting. An important point emerging from this analysis is that, in the presence of risk, the equilibrium asset prices will be dependent upon the parameters of the joint distribution of the attributes. Regulatory policies enacted by public and private agenciea can cause changes in these parameters. The chapter concludes by briefly discusaing how the welfare effects of changes induced by regulatory policy may be assessed.

Chapter four provides an overview of the existing portfolio choice models in economics and finance. The purpose of this chapter is to demonatrate
that in existing models, the key attributes affecting the demand for assets are the parameters of the joint distribution of asset returns. These utilitybased portfolio choice models are shown to be subsumed as special cases of the general attribute model proposed in the previous chapters.

In chapter five, data on financial and accounting characteristica of over 2000 firms are used to evaluate a simplified version of the theoretical model proposed in chapter two. Relying on previous atudies, a variety of attributes indicative of a firm's market power, growth potential, degree of diversification, and other characteristics are considered. The implicit value of each attribute is estimated and attributes are ranked according to their contribution to the prices of common stocks.

The empirical examination indicates that a large number of attributes strongly influence asset prices. Among these, attributes that are indicative of a firm's future earnings potential, e.g., retained earnings, dividend payments, advertising expenditures, etc. are the most significant. Qualitative characteristics of firms, such as the exchange at which a firm's stock trades, its audit atatus, its industry ranking, etc. are also significant determinants of asset prices.

The final chapter of this dissertation summarises the results and suggests directions for future extension of this work.

Keyworda: Portfolio Choice theory, Asset Pricing Models, Investments, Product Attributes, Accounting and Financial Information

Dedicated to the memory of my father Mohammad Reza and my mother Fatemeh Biegum

Table of Contents

Acknowledgements
1 Introduction 1
2 A Generalized Attribute Pricing Model 11
2.1 The Asset-Attribute Transformation Frontier 13
2.2 The Nature of Preferences 22
2.3 Deriving Qualitative Results 26
3 Risk Analysis in the Attribute Model 34
3.1 Uncertainty in a Single Period Setting 37
3.2 Characterizing Risk Preferences 42
3.3 Measuring Risk Aversion 46
3.4 Stochastic Dominance Measures 50
4 The GAPM as A Unifying Framework 52
4.1 The State-Preference Model 52
4.2 The Parameter Preference Model 54
4.3 The Capital Asset Pricing Model 56
4.4 The Intertemporal Capital Asset Pricing Model 60
4.5 The Accounting Valuation Models 65
5 An Empirical Evaluation 67
5.1 Selecting the Relevant Assets 71
5.2 Selecting the Attributes 73
5.3 Estimation and Results 79
6 Summary and Conclusions 88
7 References 90
9 Appendix (A) 102
10 Appendix (B) 103

ACKNOWLEDGEMENTS

Completing this dissertation and receiving a doctoral degree is perhaps my most significant accomplishment to date. Reflecting back to my childhood, it is abundantly clear that without the persistence and encouragement of my family, I, like them, would not have even received a primary education. They deserve my highest praise and gratitude.

My early childhood teachers, particularly my mother, taught me a most important lesson: 'without imagination and a willingness to work hard one can not improve his or her lot in life. Every thing else is good luck or misfortune.' I am indebted to them for instilling in me this type of wisdom, which ultimately enabled me to seek higher education in the United States.

My undergraduate education was a transformation from a state of innocent credulity to one of shallow enlightenment. I am indebted to many teachers, particularly Professors Noel King and Alan Richards, who recognized the pains of this transformation, supported my efforts, and pointed me in the right direction.

My graduate years at Berkeley have been the most intense in terms of my education and most eventful on a personal level. As the chair of my dissertation committee, and a true friend, Professor James Chalfant must be credited with teaching me a large part of my analytical skills. He has influenced my intellectual development and my thinking in many ways. Without his encouragement and guidance this work would have been difficult to complete.

I shall remain indebted to him for life.
As members of my dissertation committee, Professors David Modest and Michael Hanemann also listened critically to my ideas and directed my work. I am most grateful to them for the valuable commenta they provided. For similar reasons, I am also indebted to many colleagues, particularly Professors Israel Finkelshtain, Marcel Fafchamps, Sylvia Lane, Fernando Viteri, Stephen Penman, Jeffery Perloff, and Hua He. I am especially thankful to professor Brian Wright, who, in addition to providing academic advice, served as a role model and a mentor.

My wife Mavis and our families here and overseas, have provided me their encouragement and unconditional support through out this academic endeavor. While writing this dissertation I developed a variety of odd habits, including working late into the nights, and being preoccupied when my attention was required by others. Mavis deserves a special praise for tolerating this behavior. I am grateful to her for the graceful way in which she accommodated my intellectual diversions.

1 Introduction

Much of what we know about the determinants of demand for financial assets arises from studies linking various causal variables to asset prices. The majority of these studies are rooted in either a utility based consumption-portfolio choice model or the arbitrage pricing theory. ${ }^{1}$ Both theories assign little role for investors' assessment and valuation of distinct attributes that differentiate financial assets. ${ }^{2}$

Indeed, in a world characterized by the assumptions of the standard Capital Asset Pricing Model (CAPM) only two attributes, the mean and variance, affect choice, while in the settings of the Arbitrage Pricing Theory (APT) an undetermined number of 'factors' may influence returns.

Since the creation of modern financial assets and institutions, financial statements and 'fundamental' analysis have aimed to assess and discover 'value-relevant' characteristics of assets. The origins of the modern financial services industry can be traced to these types of analysis. This growing sector of the modern economy generates and processes information about assets' attributes under the pretext that this type of analysis reduces the uncertainty associated with portfolio selection.

[^0]The existence of this industry enforces the notion that investors regard the information about asset attributes to be value relevant. Further evidence in support of this view can be found in the prevalent markets for assets that claim to be attribute specific such as 'socially responsible' in the case of environmental funds, 'politically responsible' as in the case of funds not investing in South Africa, and 'patriotic' as with 'war bonds'.

In the academic literature, information about broad attributes of firms or industries has been utilized to predict other important firm characteristics, or the probability that an event may occur. For example, Ou and Penman [84] use aggregate financial statement information to predict the likelihood of increases in a firm's earnings. Others have used such information to forecast the chance of bankruptcy, audit qualification, use of accounting methods, and targeting firms for takeover. ${ }^{3}$ Financial information has also been linked to executive compensation and incentive contracts suggesting further a link between asset prices and their attributes. 4

The link between attributes and asset prices has intermittently been explored in financial economics. Examples include the non-calendar based anomalies in finance (e.g. the size effect, debt structure, etc. [61, 62]); the link between items in financial statements and earnings (or prices) analyzed in the accounting literature

[^1][63]; the influence of qualitative factors such as management style and firm control considered in management science [19]; and the impact of market share, diversification, industry structure, economies of scale and other factors on returns or share prices.

In most of this literature, attributes influence prices indirectly. Further, the treatment is generally ad-hoc in the sense that quality variables are added to the arguments of an existing asset demand model (e.g. the addition of tax effects into CAPM; more on this in chapter 4). The question of what this implies about investor preferences has not been addressed. No formal justification as to why attributes matter is provided. Others, particularly accounting researchers and financial statement analysts, have studied the relationship between asset prices and their qualitative attributes without a formal portfolio selection model.

The subject of this dissertation is how one models portfolio choice behavior when investors' decisions are influenced by their valuation of assets' qualities. We consider the link between asset demand and asset quality within an explicit utility maximization framework. This is a useful approach because it facilitates discussion of normative policy issues, such as the welfare impact of regulatory policies forcing public disclosure of financial information, as well as some positive theoretical considerations such as how attributes influence prices and the demand for assets, or how, in the aggregate, investors trade off qualitative characteristics.

In the economic literature concerned with quality, two ways
to model the relationship between quality and demand have been proposed. ${ }^{5}$ In the differentiated commodity approach of Lancaster [60,59], goods with different attributes are treated as distinct commodities. However, the approach proposed by Houthakker [38] and Theil [109] treats those same goods as part of a generalized commodity.

A related distinction has been drawn between models which postulate a discrete versus a continuous spectrum of product quality. Justification for these assumptions may be drawn from the nature of the commodity in question.

The model proposed here allows for both representations; Discrete characterization of quality attributes is used to separate different classes of assets, e.g., stocks versus real estate. Within each class, however, quality indices can be either discrete (e.g., industry ranking) or continuous (e.g., returns). In the case of financial assets, these assumptions seem quite reasonable and their appropriateness will become clear in the chapters that follow.

Drawing on the economic literature on quality, this dissertation proposes a consumption-portfolio choice model in which assets' attributes influence investment choices. The aim of this model is to explain the demand for a large number of closely related assets in terms of a smaller number of attributes that are common to them.

Utilizing a set of standard and very general assumptions, individual investment decision rules are established. The implica-

[^2]tions of these rules for the market as a whole are considered. The equilibrium market clearing conditions are the basis of the empirical examination of the theory. A useful way of categorizing attributes is also suggested.

The main empirical task undertaken in this thesis is the identification of the relevant attributes and the estimation of the magnitude and direction of their impact on prices. Overall, the combined relevance of a variety of signals is assessed. Included are pieces of information whose release is mandated by law or accounting practices, variables that are commonly believed to affect asset prices, and other available public information.

This empirical examination provides a test of the theoretical model and gives a partial answer to the question what types of attributes influence prices. However, this model and the empirical results are also useful for addressing other issues, including the importance of the attributes in predicting future prices and hence the rate of return, and their use as a guide to improved portfolio decisions. ${ }^{6}$ An improved understanding of the role of attributes in determining asset prices may be also useful in designing efficient management compensation schemes.

On this latter point, note that modeling investment behavior as a process in which rational individuals consider a variety of asset attributes in their portfolio decisions provides a rationale for

[^3]why corporate managers devote scarce resources to the manipulation and control of such characteristics as the firm's capital structure (See Hart and Moore 1991).

Indeed, the standard agency-theoretic models of management behavior, implicitly assume that investors (actual and potential holders of a firm's equity and bonds) and the management place the same value upon a firm's characteristics, such as its debt structure. The Miller-Modigliani [79] dividend irrelevance theorems, which have been fundamental to the design of public and corporate policies in recent decades, provide a good example of this type of implicit assumption.

There are reasons to question this accepted wisdom. For example, management compensation schemes provide incentives for manipulation of certain asset attributes that are often associated with short term profitability and the relatively short tenure of the management in modern firms. ${ }^{7}$

Rational investors may not assign positive value to these attributes but instead focus on those that enhance the long term profitability of the firm. The framework proposed here provides an estimate of the investors' valuation of different attributes. Basing management compensation schemes on these types of information may further the interest of investors and the management.

The model also offers new insights on the analysis of capital market efficiency. The standard definition states that an efficient

[^4]capital market is one in which all available information at a point in time is fully and correctly reflected in security prices [44, 96]. All investors are assumed to possess equal abilities and hence face the same costs of obtaining and processing information.

The model in this thesis suggests that the definition of market efficiency should perhaps be expanded so as to relax the latter assumption. That is, efficient markets should not be viewed from an informational prospective alone, but also on whether the cost of obtaining attributes are equalized across investors. Moreover, from a societal point of view, it may also important that management's and investors' interests coincide and both value the same attributes in a firm.

Note that unlike the traditional notions of efficiency which emphasize the institutional structure of the capital market, the last definitions place greater emphasis on investors' abilities. This is important since to a greater extent investors rather than the institutions determine asset prices.

To state it differently, for any given institutional structure and any pattern of management behavior, capital markets would be more efficient if the ability to obtain attributes from assets is not investor specific. As an example consider the transaction cost associated with the purchase of stocks. Lower dealer commissions is clearly a valued attribute. The capital markets may be more efficient if the commission is equal for all investors.

The attribute approach carries some implications for re-
search in noise trading, defined as trading based on information other than the 'fundamentals', i.e., the generally accepted factors that determine future earnings, such as inventories, sales, and advertising expense. The model proposed here can aid in answering the question of what qualifies an attribute as value relevant and therefore fundamental.

Finally, the proposed attribute model will have important implications for the pricing of derivative securities, whose value is dependent upon the price of other assets. For example, in the widely celebrated option pricing model of Black and Scholes [13], option prices are dependent upon the price of the underlying stock and the the variance of the logarithm of its returns. Clearly, if a aystematic link between asset prices and other attributes is established, then it is likely that option prices are also influenced by these attributes. The nature of such interactions will be an interesting area for future research. ${ }^{8}$

It is important to note that a variety of organizations spend much resources to study the importance of asset attributes in security markets. The prevailing professional standards, which the aim to bring about market efficiency through greater informational equity, are based on this research activity. The agencies actively engaged include the Securities Exchange Commission (SEC), the Federal Deposit Insurance Corporation (FDIC), the Financial Ac-

[^5]counting Standards Board (FASB), the institute for Chartered Financial Analysts (CFA), and other private organizations.

Expenditure on such activities further demonstrates the importance of asset attributes in portfolio decisions and provides justification for the present study. The findings here will therefore be of interest to a host of public and private agencies, including the various stock exchanges, accounting and financial associations, financial rating agencies (such as $S \& P$), corporate officers, pension and mutual fund managers, and finally individual investors.

The remainder of the dissertation is organized as follows. The general attribute pricing model is laid out in chapter 2. Duality between utility maximization and cost minimization in portfolio decision is shown to be a key feature of the model presented in this chapter. Testable hypothesis may be obtained from the model are high lighted.

Chapter 3 is devoted to the discussion of how uncertainty about asset attributes influence investor behavior. A key aspect of risk analysis in the model proposed here is the existence of multivariate uncertainty, which is due to the randomness of asset attributes. Many concepts from the univariate risk analysis, e.g., risk aversion and stochastic dominance, have been extended to the multivariate case. In chapter 3 these concepts are applied to the attribute model. Welfare analysis of reduced uncertainty is also briefly discussed.

Chapter 4 provides a brief overview of the existing utility based portfolio choice models in finance and accounting and shows
that the attribute model nests these as its special cases. The purpose of this chapter is to demonstrate that the existing models differ from one another simply in their selection of important asset attributes, e.g., mean and variance, and the selection criterion may be somewhat ad hoc.

In chapter 5 we take up the empirical examination of the attribute model. A set of simplifying assumptions which help operationalize the model for estimation purposes are invoked. Data from the stock market is used to assess the influence of firm attributes on the price of their stocks. A large number of studies in economics and other fields are used to identify the relevant attributes.

The final chapter provides a brief summary of the results considers ways of improving the study, and auggests directions for future research.

2 A Generalized Attribute Pricing Model

A general model describing individuals' consumption and investment decisions, where qualitative attributes of assets are assumed to influence choice, is presented in this chapter. The motivation for the present model lies in the household production theory of Becker [10] and Muth [80]. The salient feature of their approach is the treatment of consumers as producers of non-market goods. Other features of this theory will be noted in the course of discussion which follows. ${ }^{9}$

Consider the following characterization of consumers' investment behavior. Individuals derive utility from consumption activities. Financial assets are sought primarily for intertemporal smoothing of income and therefore consumption, i.e. they provide a way to transfer consumption goods across time.

By transferring wealth in an 'optimal' manner, individuals can increase their consumption over time. Optimal transfer of wealth across time is dependent upon the characteristics of the portfolios held, the component of which are assumed to yield flow of services such as security, liquidity, etc. The ability to smooth consumption and enhance utility is thus dependent upon the various attributes of the assets held in an individual's portfolio. Therefore the utility an individual receives is directly dependent upon the total of various attributes provided by their portfolio.

[^6]In a recent study of demand for money and money substitutes Belongia and Chalfant ([11]) propose a model in which individual's utility indirectly depends on the attributes of assets held. In the Belongia and Chalfant model, this dependence arises from the fact that utility is defined over asset holdings (i.e., cash holdings, demand deposits, money market accounts, etc.). In our framework, however, asset characteristics influence portfolio decisions and in turn consumption.

Through their influence on present and future asset prices, these attributes affect future wealth and consumption. This characterization of investment behavior is based on the observation that individuals combine marketed assets, which may include their own labor and human capital, to produce utility-bearing non-marketed portfolio attributes (e.g. safety, liquidity, etc.).

Clearly, this characterization of investment behavior is consistent with the existing models of portfolio behavior. For example, the setting envisioned here is consistent with that in the simple mean-variance model of Markowitz [74] and its equilibrium versions due to Sharpe [103] and others, as well as the parameter preference model of Rubinstein [95], Ingersol [41], Kraus and Litzenberger [55], and Litzenberger and Ronn [72]. Further parallels with these and other models will be discussed in chapter 4. The next chapter provides an axiomatic representation of investment choice based on the above characterization of behavior.

2.1 The Asset-Attribute Transformation Frontier

In this and the following section the notation and the assumptions required for the most general version of the attribute model are introduced. The first focus is on establishing the technical relationship between assets and attributes. The representation of asset-attribute transformation technology parallels that of the theory of the firm with the distinctions that here 'production' is undertaken by individual investors, and more importantly, because of the possibility of short sales, 'inputs' may take on negative values.

Let $X \in R^{n}$ denote the vector of available marketed assets and $x \in X$ a subset of these assets used to form a portfolio. ${ }^{10}$ The term marketed assets is used in its broadest context so that X may include most conventional assets such as stocks, bonds, and specific combination of such instruments, i.e. mutual funds, the 'market portfolio', other real investments and a risk free asset. Short sales of assets are represented by negative signs. Restrictions on short sales and other market imperfections are discussed below.

Denote the vector of attribute (quality) parameters associated with X by $\beta \in R^{\prime}$; e.g., $b_{i j} \in \beta_{i}$ is the amount of attribute j in a unit of asset i. We assume there are r possible attributes that characterize assets. A subset of these, $r^{*} \subseteq r$, are presumed to be common to all assets. ${ }^{11}$ The remainder of r is the collection of 'unique' attributes in all assets; i.e., those attributes found in no

[^7]other assets.
To distinguish assets that may be identical with respect to the common attributes we require each asset to have at least one unique attribute. Now any asset may be characterized by a minimum of $r^{*}+1$ attributes. Given this characterization, the dimension of attribute space β can be in the range $n \times\left(r^{*}+1\right) \leq$ $s \leq r^{*} \times(n-1)+r .{ }^{12}$

We assume that from an investors point of view the quality aspects of assets, β, are exogenous and not an object of choice. However, through their choices individuals do determine the attributes in their portfolio. To treat asset attributes as a choice variable would result in a dimensionality problem, where the attribute space would become infinite dimensional. For assets, the finite dimensional attribute space assumption seems reasonable and sufficiently general. Also, although the number of qualitatively differentiated marketed assets are large, note that in actual markets this number is finite.

Denote the vector of utility bearing total attributes produced from portfolios of X by $Z \in R^{m}$, where $r^{*}+1 \leq m \leq r$. Note that m determines the number of arguments which may enter an individual's utility function. At one extreme, an individual's portfolio can be composed of a single asset with one unique attribute and r^{*} attributes common with other assets ($m=r^{*}+1$).

At the other extreme the individual's portfolio could contain

[^8]all marketed assets or just the market portfolio (note that $\boldsymbol{m}=\boldsymbol{r}$ for both). This characterization is consistent with the observation that two investors who desire the same characteristics in their portfolio my meet this need by combining different assets.

It is important to emphasize here that although the variety of attributes which distinguish assets may indeed be large, those which enter an individual's utility function (i.e., m) need not be. The discussion of the nature and relevance of both types of attributes will be undertaken in chapter 5 .

We assume there exists a technical relation, i.e. a mapping from X to Z, which explicitly depends on the vector β. The dimension of the quality parameter vector β is reflective of the variety of available assets and possible attributes. In addition to being exogenous, β is assumed to be quantifiable and objectively measured by all economic agents. This latter assumption corresponds to the standard 'common knowledge' assumption often invoked in finance literature and implies that there are no differences in information processing abilities of investors.

The assumption that the quality parameters are exogenous can be interpreted in two ways. First, they are exogenous to individual investors but may vary across investors. For instance, elements of $\boldsymbol{\beta}$ that measure transactions costs (commissions) may be different for institutional versus individual investors. This may indicate an inefficiency in the capital markets in the sense that certain groups of investors possess market power.

Second, the exogenous quality parameters may be the same for all investors, which is also an statement about the efficiency of the capital markets. This is similar in flavor to the standard homogeneous belief assumption in equilibrium finance models. For example in the case of equilibrium CAPM it is assumed that return distributions are the same for all investors. According to this view, markets are efficient when the asset-attribute technology is the same for all individuals.

From the short run perspective of an investor, it may be reasonable to assume that the parameter vector β, which could include the rate of return on an asset, may be nonstochastic. ${ }^{13}$ Over time, however, because of market forces, at least some quality parameters are likely to change randomly for all investors. More realistically, over longer horizons the quality parameter associated with an individual's portfolio may be influenced by inputs such as human capital and the time devoted to monitoring assets and composing portfolios. ${ }^{14}$

Turning to the formal model, denote any arbitrary pattern of assets-attribute transformations, i.e., an investment opportunity, by $y(b)=\left\{Y \in R^{n+m}:(x, z) \in Y\right\}$. The set of all feasible in--

[^9]vestment opportunities will be denoted by $Y(\beta)=\left\{Y \in R^{n+m}\right.$: $(X, Z) \in Y\}$ and called the Attribute Tranoformation Set (ATS). Given β, the ATS is assumed to be compact. Formally, $Y(\beta)$ is assumed to be nonempty, closed, bounded, and to include the origin, $0 \in Y(\beta)$.

The contours of the ATS, denoted by $Y(z ; \beta)=\left\{X \in R^{n}\right.$: $z=\bar{Z}\}$, will be called an asset requirement set, or (ARS). The ARS is the listing of all portfolios that can generate a given vector of attributes \bar{Z}. This set is assumed to be monotonic, i.e., if $x \in Y(. ;$.) and $x^{\prime} \geq x$, then $x^{\prime} \in Y(. ;$.).

Monotonicity implies that a given vector of attributes generated by a portfolio may also be generated from another portfolio which contains more of the same assets. Finally, we assume it is possible to generate a given vector of attributes by composing a portfolio from two existing portfolios which generate the same attribute vector independently. This implies that the ARS is convex, i.e., if $x \in Y(. ;)$ and $x^{\prime} \in Y(. ;)$ then for all $t \in(0,1)$, $t x+(1-t) x^{\prime} \in Y(. ;.) .{ }^{15}$

These properties are similar to those posited in the standard production theory discussed in Debreu [22], and they permit the representation of a joint production function, which is an important property utilized below. The justification for these theoretical assumptions is to insure that the solution to the investor's optimization problem exist and are well behaved.

[^10]Relying on these technical properties, particularly the monotonicity of the ARS, the efficient asset-attribute frontier may be represented by a joint transformation function $G(X, Z ; \beta)=0$, which is a mapping from $R^{\boldsymbol{c}}$ into R^{m}. The assumed convexity of the asset requirement set implies that $G(X, Z ; \beta)$ is monotonic and convex in Z and X. Monotonicity permits us to express the level of 'output' of any attribute z_{k} in terms of the assets and all other attributes, i.e., $z_{k}=G_{k}\left(X, z_{m-k} ; \beta\right)$. It is possible to show that, holding all other attributes (z_{m-h}) constant, $G_{h}(.$.$) is a quasiconcave function$ of X. ${ }^{16}$

Furthermore, the assumptions on the ARS imply that for any quality vector $\beta, G(0,0, \beta)=0$, i.e., no attributes can be obtained without assets, and if $G(X, Z, \beta)=0$ and $Z \neq 0$ then $x_{i} \neq 0$ for at least one \boldsymbol{i}; to obtain non zero attributes requires non zero quantities of at least one asset.

The function $\boldsymbol{G (.)}$ is a joint transformation function. This jointness captures the possibility that the optimum level of one attribute, say Z_{k}, may be dependent upon the level of other attributes, as well as on the portfolio composition. An example of this representation is the mean portfolio return, which in an efficient market, may depend upon the portfolio variance, the quantity of the underlying assets, and their expected returns.

When the level of an attribute generated by a portfolio is

[^11]independent of other attributes obtained from the same portfolio, the transformation functions will be separable; $z_{k}=G_{k}\left(X ; \beta_{k}\right)$. The ATS will now be $Y_{h}\left(\beta_{h}\right)=\left\{Y_{h} \in R^{n+1}:\left(X, z_{k}\right) \in Y_{h}\right\}$. This representation appears to be more appropriate for the assets considered here and is adopted in chapter (2.4). However, in the theoretical developments that follow the generality of the model is maintained by permitting jointness.

It will also prove analytically convenient to place some restrictions upon the attribute quality vector. In particular, we assume that $Y(\beta)$ is continuous over the set of all quality vectors B and is compact throughout B. These conditions simply imply that $G($.$) is continuous in \beta \in B$, so that 'small' changes in β do not cause 'large' changes in the attribute outputs, i.e., the transformation function is smooth with respect to the quality parameters.

It is likely that beyond a certain threshold, there are decreasing returns in the production of attributes. As an example of an attribute exhibiting this property consider the variance of returns on a portfolio (σ_{p}^{2}):.

$$
\sigma_{p}^{2}=\sum_{i} \sum_{j} s_{i} s_{j} \sigma_{i j}
$$

where s_{i} is the share of wealth in asset $i, \sigma_{i j}$ is the covariance between returns of i and j, and $\sigma_{i i}=\sigma_{i}^{2}$ is the variance of returns on i. Now note that for given $\sigma_{i j}$, the portfolio variance σ_{p}^{2} is a concave function
of the quantity of any particular asset $x_{i}{ }^{17}$
Furthermore, suppose wealth is equally divided among the different assets, i.e., $s_{i}=1 / N$ where N is the number of different assets. Now note that though σ_{p}^{2} decreases through diversification as more assets are added (N rises), it falls at a decreasing rate and level off at some level which depends upon the $\sigma_{i j}$'s. Here we have assumed that the covariance terms $\sigma_{i j}$ are non-zero; otherwise, σ_{p}^{2} could in fact be reduced to zero an N becomes very large.

The structure of the model proposed below permits these types of decreasing returns, although the convexity and monotonicity of the ARS rules out increasing returns to assets. This may seem somewhat artificial since large institutional investors, by virtue of their order size, appear to receive some preferential treatment. In any case, increasing returns is essentially a restriction on the values of β and is therefore empirically testable in this model.

The structure proposed so far is quite general and very flexible in terms of covering a variety of possibilities. Noticeably absent from the above characterization of the attribute technology has been the issue of uncertainty, which is an integral component of investment decisions. The assets-attribute relationship depicted above offers a natural and meaningful way of introducing uncertainty into our analysis. For any given portfolio $x \in X$, an individual's ability to obtain $z \in Z$ is dependent upon the associated quality parameters $\beta \in B$, which, from the perspective of the investors, may be

[^12]random.
Indeed, this is how uncertainty is introduced in the existing portfolio choice models. To support this contention, consider the standard one period consumption-saving model in which individuals maximize their utility from consumption $u\left(C, C_{1}\right)$, subject to constraints $C=W-P^{\prime} X$ (current consumption) and $C_{1}=(1+R) P^{\prime} X$ (end of period consumption), where W is initial wealth, and $R=$ P_{1} / P is the rate of return on investment ($P^{\prime} X$).

Now letting $Z=\left\{C, C_{1}\right\}$ and $\beta=\left\{P, P_{1}\right\}=\{R\}$, we see that uncertainty about returns (end of period price) affects the individual's choice through the vector β. In the third chapter of this dissertation I integrate uncertainty into the model in this manner. Further discussion is postponed to that chapter. To further analyze the investor's portfolio choice problem, under certainty or risk, we need to place some restrictions on individual preferences. We take up this task in the following section.

2.2 The Nature of Preferences

In traditional portfolio choice models in economics and finance, individuals are assumed to derive utility from consumption at each point in time. Portfolio selection is the act of choosing an investment strategy that results in a consumption profile that maximizes lifetime utility. Embedded in this representation of investment behavior are a number of strong assumptions, including stable preferences, time consistency of decisions, and others.

These issues have been discussed extensively in the literature, see for example Ingersoll [42]. Some of the objectionable reatrictions of the 'traditional' model, e.g., time additive utility function, may be rendered unnecessary in the attribute model. This can be an important novelty of the attribute approach.

The cornerstone of the attribute model is the conjecture that investors value the characteristics of their portfolio, which is a vehicle for transferring consumption goods across time. Hence at any point in time it is the collection of a portfolio's attributes, Z, that provides utility.

This dependence of utility upon attributes can arise because utility is defined over asset holdings and therefore their attribute as in Belongia and Chalfant [11] or utility is defined over consumption stream which is influenced by asset holdings and in turn their attribute as is assumed here.

Individual preferences over the choice set $Z \in R^{m}$ are represented by preference ordering \succeq, assumed to be a transitive, re-
flexive, complete, and continuous, i.e., investor's preference ordering is representable by a continuous, real-valued utility function, $u: \boldsymbol{R}^{m} \rightarrow R$. In addition, we assume the preference ordering is convex; article ${ }^{18}$

Continuity and quasiconcavity are the regularity conditions required for optimization. Positive monotonicity of preferences is not assumed, i.e., more of an attribute may not necessarily better. EmQHI . Indeed for certain attributes, such as portfolio variance, common sense (or stochastic dominance arguments) suggest that for a given mean, lower variance will be preferred.

Since the empirical aim of the dissertation is to elicit the aggregate valuation of various attributes, no restrictions are placed on the marginal utility of attributes. This simply implies that the indifference surface (over the attributes) may be non-convex. Alternatively we may assume that attributes are measured in such way that marginal utility of all attributes is positive.

Additionally, the definition of the total attribute vector Z does not preclude the possibility that some or all of the marketed assets may enter the utility function directly. In fact when $m=n$ and $Z_{i}=X_{i}$ for all $i=1, \ldots, n$ then the present model reduces to one in which utility is derived from asset holdings directly. ${ }^{18}$

To establish the connection between the attribute model

[^13]and the standard intertemporal portfolio choice model in which utility is derived from consumption ${ }^{20}$ one may sequentially define $Z_{i}=C_{t}=W_{t}+Y_{t}-P_{t}^{\prime} X_{t}$, where C_{t}, W_{t} and Y_{t} are respectively the consumption, initial wealth, and non-asset income at time $t=i=1, \ldots, T$ and X_{t} and P_{t} are the vector of assets and their prices at t.

These alterations of the general model will reduce the dimensionality of $Y(\beta)$ though its assumed properties will be preserved. To see this note that under the last representation the ATS is becomes $Y\left(W_{0}, Y_{i}, P\right)=\left\{Y \in R^{n+T}:(X, C) \in Y\right\}$. Again, increasing returns to investment is ruled out unless the budget constraint is non-linear in X, which may occur because of say decreasing transaction costs. In the development of the specialized model in chapter 5, this representation will be used to introduce current consumption as an argument into the utility function.

When uncertainty regarding production of all or some attributes is present, it can be captured, we argued, by randomization of the parameter vector β. In that case a von Neumann Morgenstern utility representation will be more appropriate, where the probability distribution of β and consequently Z could be the same for all investors (homogeneous beliefs) or vary across investors (heterogeneous beliefs).

The probability representation choice, subjective or objective, should depend upon the type of attributes envisioned. Addi-

[^14]tionally the choice is an indirect statement of one's beliefs about capital market efficiency. Bagwell [4] provides a recent summary of issues that are related to homogeneity of investors beliefs. I provide a discussion of the influence of uncertainty on investor decisions in chapter 3. Before so doing, however, the next section discusses the types of testable hypotheses that could arise from the above characterization.

2.3 Deriving Qualitative Results

Having completed the discussion of investor preferences and the attribute production technology we now turn to deriving testable hypotheses and qualitative conclusions. These types of results can be obtained from the general model in two basic ways: First, from a utility maximization approach, and second, from the dual approach of expenditure minimization. Exploiting this dual structure of the model, a number of questions may be raised and, in some cases, tested empirically. This chapter provides a general discussion of these issues.

Under the utility maximization approach, an individual's problem is to choose, subject to the transformation constraint $G(X, Z, \beta) \leq$ 0 and a budget constraint $P^{\prime} X \leq W$, a portfolio of marketed assets that will maximize $u(Z)$ where P is the vector of exogenous asset prices and W is individual's wealth. ${ }^{21}$ There are no restrictions on short sales, though if necessary these can be easily imposed. The following two propositions characterize various aspects of investor's utility maximization problem or its dual expenditure minimization approach.

Proposition 1 : Suppose $u(Z)$ is continuous and quasiconcave and the assumptions on $G(X, Z, \beta)$ are satisfied. Then there exist a set of n quality augmented asset demand functions

[^15]$X=X(P, W, \beta), m$ attribute demand functions $Z=Z(P, W, \beta)$, an indirect utility function $V=V(P, W, \beta)$ and a set of price decomposition equations such that
\[

$$
\begin{equation*}
P_{i}=\sum_{k=1}^{m} \theta_{k}(P, Z, \beta)\left[\partial G_{k} / \partial x_{i}\right] \tag{2.3.1}
\end{equation*}
$$

\]

Proof : The first order necessary conditions (FONC) for the optimization problem, choose \boldsymbol{x} so as to

$$
\max u(Z)
$$

subject to

$$
G(X, Z, \beta) \leq 0
$$

and

$$
P^{\prime} X \leq W
$$

are

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial u}{\partial z_{k}} \frac{\partial G_{k}}{\partial x_{i}}-\theta p_{i}=0 \tag{2.3.2}
\end{equation*}
$$

Given the assumptions on $\boldsymbol{u}($.$) and \boldsymbol{G}($.$) , the FONC may,$ in principle, be solved for the quality augmented asset demands (QAAD), $X(.) .^{22}$ Substituting these into $G($.$) , the optimum level$ of attributes $Z($.$) may be expressed as a function of wealth, prices,$ and the quality parameters. Substituting Z into $u($.$) the indirect$

[^16]utility function obtains. Solving the first order conditions for p_{i} and utilizing the definition $\theta=\partial u / \partial W$ gives the price decomposition equation where $\theta_{k}=\partial W / \partial z_{k}$ is the implicit value or 'shadow cost' of the $k^{\text {th }}$ attribute.

This latter relationship is analogous to the hedonic price methodology widely used in the consumer demand literature. It constitutes a method of establishing a link between asset prices and their attributes. Most importantly, this link arises from a theoretically consistent optimizing investor behavior. This relationship is implicit in many seemingly ad hoc studies in finance and accounting in which pries (or returns) are regressed on various financial characteristics of assets.

Since the assumptions on $\boldsymbol{u}($.$) are essentially the same as$ those in the standard consumption saving theory, it can be shown that the properties of $X($.$) and V($.$) , with respect to P$ and W, e.g., homogeneity, are similar to those in the standard models. However, a priori, no statements can be made regarding the effect of the quality parameters on investors indirect utility or asset demands. Later, these questions will be addressed empirically.

Relying on the theorems of Rubinstein [97], we can aggregate X over all investors to obtain aggregate demand functions, which in addition to asset prices and aggregate wealth, are also dependent upon the qualitative attributes of assets. This establishes the first theme of the dissertation. In the aggregate, demand for financial assets are determined by their perceived qualitative char-
acteristics. In principle, empirical examination of this hypothesis could proceed by determining the appropriate set of assets and their associated attributes, and statistically examining the link between them.

It is possible to obtain similar results by viewing the investor's choice as the outcome of a two stage optimization problem, which is 'dual' to the previous utility maximization. At the first stage the investor's aim is to minimize the cost of achieving a vector of attributes subject to the technical relation ATS. This generates the efficient frontier between the assets and the attributes. In the second stage utility is maximized subject to the optimum cost function. The optimum portfolio is at the tangency of the indifference surface and the cost efficient frontier.

Proposition 2: Given $\boldsymbol{G}($.$) there exists an expenditure$ function $E(P, Z ; \beta)$ such that $\partial E(.) / \partial z_{k}=\theta_{k}(P, Z, \beta)$ and $\partial E(,) / \partial p_{i}=\bar{x}_{i}(P, Z, \beta)$.

Proof: Given the assumptions on $G($.$) , the FONC for the$ problem, choose x so as to

$$
\min P^{\prime} X
$$

subject to

$$
G(.) \leq 0
$$

may, in principle, bw solved for the conditional asset demands $\bar{X}(Z, P ; \beta)$.

Substituting these into the wealth constraint, the expenditure function $E(P, Z ; \beta)$ is obtained. Now consider the problem choose X, P and Z so as to maximize $F()=.P^{\prime} X-E(P, Z ; \beta)$ subject to $G() \leq$.0 . The FONC with respect to p_{i} and z_{k} gives the last parts of the proposition. This latter part of proof relies on the envelope theorem.

The second stage of individual's decisions is to choose Z so as to max $u(Z)$ subject to $E(P, Z ; \beta)=W$. This optimization yields $X(),. Z(),. V($.$) , and a price decomposition equation, all$ of which, because of the dual structure of the model, are identical to those in proposition 1.

Notice that for financial assets, market efficiency in the form of increased competition may insure that the attributes are produced at the least cost possible so that investors need not undertake the first stage of this optimization.

In the above representations of investor choice the attribute transformation function was treated as a constraint in the optimization programs. Alternatively it is possible to substitute out Z and obtain the transformed utility function $u^{*}(X ; \beta)$. Optimization can now be undertaken with respect to $\left.u^{*}(),\right)^{23}$

The utility function $u^{*}($.$) enables us to express (translate)$ individual preferences over non-marketed attributes to the space of marketed assets X and their quality parameters $\boldsymbol{\beta}$. It is important to note that $u^{*}($.$) conveys information regarding individuals'$

[^17]preferences and their ability to obtain attributes from the available assets.

The translation of preferences to the space of assets and quality parameters thus permits an alternative expression of individual's choice problem. The next two propositions characterize this second approach.

Proposition 3 : Suppose $u^{*}(X, \beta)$ is continuous and quasiconcave. Then there exist a unique set of asset demand functions $X^{*}(P, W ; \beta)$, an indirect utility function $V^{*}(P, W ; \beta)$, and a price decomposition equation all identical to those derived in proposition (1).

Proof: The first order conditions for the optimization problem choose x so as to

$$
\max u^{*}(X ; \beta)
$$

subject to

$$
P^{\prime} X \leq W
$$

yield $X^{*}($.$) , and in turn V^{*}=u^{*}\left[X^{*}(.) ; \beta\right]$. The decomposition equation is obtained by solving the FONC for p_{i}. The second part of the proposition indicates that the portfolio choice functions are invariant to the manner in which the decision problem is viewed provided that the problem is well behaved. The next proposition characterize the dual to this primal utility maximization.

Proposition 4 : Suppose the assumptions on $u^{*}($.$) are sat-$ isfied. Then there exists a set of asset demand functions $X^{*}(P ; \beta, \bar{u})$ and an expenditure function $E^{*}(P ; \beta, \bar{u})$ such that $\partial E^{*}(.) / \partial p_{i}=$ $X^{*}($.$) and \partial E^{*}(.) / \partial \beta_{k}=\theta_{k}^{*}($.$) .$

Proof: The first order conditions for the optimization problem choose x so as to

$$
\min P^{\prime} X
$$

subject to

$$
u^{*}(X, \beta) \geq \bar{u}
$$

yield $X^{*}($.$) . The expenditure function is defined as E^{*}()=$. $P^{\prime} X^{*}($.$) . The derivative conditions are a consequence of the enve-$ lope theorem and $\boldsymbol{\theta}_{k}^{*}($.$) is the value of the marginal change in quality$ of asset k. The expenditure and the indirect utility functions provide a tool for assessing the welfare impact of change in prices and more importantly the qualitative attributes of assets.

It is possible to show that the properties of the indirect utility function and the expenditure functions are identical to those in standard demand theory. For example, one can show $E^{*}($.$) is$ homogeneous, concave and monotonically increasing in P, increasing in u, and continuously differentiable in (P, β, u). The properties follow directly from those of $X^{*}($.$) .$

This completes our brief overview of the general attribute model. As noted, the structure of the model is similar to that of neoclassical demand theory with the exception that our model ex-
plicitly accounts for quality. To obtain conclusions regarding the impact of quality on asset demand under any of the earlier representations one must place further structure on the utility function and/or the attribute production technology.

We undertake this task in chapter 5 , where we utilize the results of proposition 1 to derive a price decomposition equation that allows us to estimate the shadow price of a number of attributes. Before turning to this task, however, we first discuss the implication of uncertainty regarding the attributes in the following sections and then demonstrate the generality of this model in chapter 4.

3 Risk Analysis in the Attribute Model

In the proceeding analysis we had explicitly assumed that all relevant variables, particularly asset quality parameters and prices, are known with certainty. This may be too strong to assume given the uncertainties associated with portfolio choice decisions. The assumption, however, was invoked so as to facilitate a simple exposition of the dual structure of the portfolio choice model, which basically remains unchanged when risk is integrated into the analysis.

In this chapter we analyze the influence of uncertainty on investor's decisions. This analysis is important because it provides valuable insights into the portfolio choice problem in the presence of a number of random variables, i.e., multivariate risk. This is fundamentally different than the univariate uncertainty associated with wealth alone. Moreover, this analysis makes it possible to consider the welfare implications of factors which may reduce the degree of uncertainty associated with qualitative attributes of assets.

A number of regulatory policies under consideration by the Securities Exchange Commission (SEC), and other governmental and private agencies, e.g., public release of a firm's financial information and the imposition of uniform accounting practices, will have a direct impact on the degree of investor uncertainty.

As was suggested in section 2.1, a natural way of integrating risk into the present model is to introduce uncertainty through randomness in the vector β, which contains asset quality parame-
ter and asset prices. To highlight the key features of the portfolio choice problem in the presence of multivariate uncertainty a simplified version of the general model discussed above is utilized. The results discussed below, however, can easily be extended to the more general framework above.

Consider the following characterization of an investor's behavior in a single period setting. Utility is derived from current consumption of a single consumption good C_{0}, the end of period wealth W_{1}, and the characteristics of the portfolios held. ${ }^{24}$ Financial assets enable the investor to transfer consumption goods across time and reduce fluctuation in intertemporal utility. Assume that security prices are defleted by the price of the single consumption good, i.e., the consumption good price is the numeraire.

The ability to smooth consumption and therefore reduce fluctuations in utility is dependent upon wealth in each period. Initial wealth W_{0}, is predetermined and exogenous to the model. Terminal wealth W_{1}, however, is dependent upon the end of period price of the individual's portfolio, and this, in turn, is influenced by the various attributes of the assets held.

The relationship between the terminal value of a portfolio and its characteristics may be seen as a consequence of the general attribute model, which indicated that asset prices at any point in time will be dependent upon their attributes. This is true for the end of period asset price vector P_{1} which will depend upon the

[^18]realization of the attribute vector $\boldsymbol{\beta}$.
Ex ante, however, uncertainty about β translates into uncertainty about P_{1} and in turn W_{1}. The fact that portfolio attributes provide the means for anticipating future wealth provides the rationale for their direct introduction into the investor's utility function.

There are other reasons for including asset attributes in the utility function as well. Prominent among these is the observed phenomenon that investors hold certain class of assets for reason that are independent of their potential returns. Some examples of this type of behavior includes the so called environmental funds which are composed of equity of firms that purport to be engaged in production activities that does not harm the environment. A second examples, and one which dates further in time, is holding gold as a hedge for inflation. There are many other examples of this type.

These provide further justification for why the utility an individual receives may be directly and indirectly dependent upon the various attributes provided by their portfolio. This type of assumption has been implicit in previous work dating to the liquidity preference model of Tobin [110] and more recently in Belongia and Chalfant [11]. ${ }^{25}$

[^19]
3.1 Uncertainty in a Single Period Setting

In this section the analytical structure of the single period attribute model in the presence of risk is laid out. The investor's preferences are represented by a Von Neumann- Morgenstern utility function defined over current consumption C_{0}, terminal wealth W_{1}, and the vector of portfolio attributes Z. The utility function, $u\left(C_{0}, W_{1}, Z\right)$, is assumed to be continuous, non-decreasing, and quasi-concave in its arguments. The investor begins the period with a non-random initial wealth W_{0} and faces a budget constraint that equates the sum of current consumption and investment to initial wealth.

Borrowing and lending, short selling of assets, and transaction costs will influence the wealth constraints. Commissions and transaction costs vary with the size of purchase and will therefore add nonlinearities to the budget constraint. Similarly, differences in borrowing and lending rates adds discontinuities to the terminal wealth constraint. To maintain the focus on the analysis of risk behavior these complications are not added to the model at this point. Because of time and space limitations these refinements, though interesting, are postponed to future research.

In addition to their wealth constraints, investors also face m separable asset-attribute transformation functions $\boldsymbol{Z}_{\boldsymbol{m}}$ whose parameters $\boldsymbol{\beta}_{\mathrm{m}}$ are uncertain from the investor's perspective. The general characteristics of the attribute production technology, namely that these functions are well behaved and continuous, was discussed in section 2.1. The formal statement of investors problem is; Choose
current consumption C_{0} and a portfolio X (a vector with elements x_{i} being the quantity of asset i held) so as to:

$$
\begin{equation*}
\operatorname{Max}\left\{E u(Z)=E u\left(C_{0}, W_{1}, Z_{1}, \ldots, Z_{r^{*}}, Z_{1}^{u}, \ldots, Z_{n}^{u}\right)\right\} \tag{3.1.1}
\end{equation*}
$$

subject to

$$
\begin{gathered}
C_{0}=W_{0}-P_{0} X \\
W_{1}=\tilde{P}_{1} X \\
Z_{k}=G_{k}\left(X ; \tilde{b}_{k}\right), \quad \forall k=1, \ldots, r^{*} \\
Z_{i}^{u}=G_{i}^{u}\left(x_{i} ; \tilde{b_{i}^{u}}\right), \quad \forall i=1, \ldots, n
\end{gathered}
$$

where the initial wealth (W_{0}), current asset prices (P_{0}), and the utility function $u($.$) and the transformation functions \boldsymbol{G}($.$) are known$ and non-random. The randomness in the investment problem is associated with attributes common to all assets $\tilde{b_{k}}$, and those unique to each asset $\tilde{b}_{i}^{\text {i. }}$. The expectation operator E is taken with respect to the joint distribution function of all random variables, which are denoted by \sim over them.

For the sake of notational parsimony, let the vector $\overline{\boldsymbol{\beta}}$ be ($\tilde{P}_{1}, \tilde{b_{k}}, \tilde{b_{i}^{u}}$) and denote the subjective joint probability distribution function of element of $\tilde{\beta}$ by $F(\tilde{\beta} ; \Gamma)$, where Γ is the parameters of this distribution. We assume that the ex ante beliefs of the individual may be characterized by the distribution function $F($.$) .$

Upon substituting the constraints into the utility function (proposition 2 sections 2.2) the investment problem in 3.1.1 may be restated as; Given current asset prices and initial wealth choose the portfolio X so as to:

$$
\begin{equation*}
\operatorname{Max}\left\{E u(X ; \tilde{\beta})=\int u(X ; \tilde{\beta}) d F(\tilde{\beta} ; \Gamma)\right\} \tag{3.1.2}
\end{equation*}
$$

This representation is useful for the discussion of multivariate uncertainty which follows and demonstrates the earlier claim that in general risk may be associated with the quality vector $\tilde{\boldsymbol{\beta}}$. Note that initial consumption, which is the residual of wealth after the investment decision, does not appear in the utility function.

The substitution for C_{0} is undertaken so as to place the emphasis of discussion on the portfolio choice decisions. The following two remarks help explore the duality structure of the attribute model under risk. A brief discussion of welfare analysis of reducing attribute uncertainty follows. Characterizing individual's attitude toward risk and issues related to stochastic dominance are discussed in section 3.3.

Remark 1 : The dual structure of the attribute model is not effected by the introduction of uncertainty through the joint probability distribution function $F\left(\tilde{\beta}_{;} \Gamma\right)$. In particular, the Γ parameters, which characterize the joint distribution of attributes, will become arguments to the functions describing the optimal consumption and investment decisions.

An example will further clarify this point. Consider a one
period consumption-saving problem under certainty. Suppose the only attribute that affects investors' utility is the rate of return on this riskless investment (risk free rate is the same for all investments in this economy). The demand for this risk free investment will clearly depend upon the rate of return. With the introduction of uncertainty, say by assuming that rates of return are jointly normally distributed, asset demand will now depend upon the mean, variance, and covariance of returns (Γ).

Remark 2 : The price decomposition equation 2.3 .1 will also become a function of Γ. This suggests that in a risky environment asset prices will be reflective of the uncertainty associated with their attributes. I will show in chapter 4 that this is how asset prices are determined in the existing equilibrium asset pricing models in the finance literature (e.g., the mean-variance model).

A more important point in terms of this analysis is the representation of the indirect utility function associated with the attribute model under uncertainty. Consider the investment problem in 3.1.1 (or 3.1.2), for which the optimal consumption and portfolio choice can be characterized by $C_{0}=C_{0}\left(P_{0}, W_{0} ; \Gamma\right)$ and $X=X\left(P_{0}, W_{0} ; \Gamma\right)$.

Substituting these back into the utility function, the indirect utility function $\hat{V}\left(P_{0}, W_{0} ; \Gamma\right)$ is obtained. This is a useful function for constructing monetary measures of the welfare effects of actions that may reduce uncertainty regarding the future asset prices \tilde{P}_{1} or quality parameters $\overline{b_{k}}$ or $\overline{b_{i}}$.

Improved information and reduction in uncertainty can result when regulatory policies enacted by such agencies as the SEC forces timely and accurate release of financial information that influences asset prices. Alternatively, risk reduction activities such as independent research and monitoring can be undertaken by investors at a cost. In either case the reduction in risk may be represented by changes in Γ and its monetary value may be measured by the change in the expected indirect utility.

Formally, the compensating variation (CV) measure of a change from Γ to Γ^{1}, i.e., a change in the joint distribution of $\tilde{\boldsymbol{\beta}}$, may be defined by:.

$$
\int \hat{V}\left(P_{0}, W_{0} ; \Gamma\right) d F(\tilde{\beta} ; \Gamma)=\int \hat{V}\left(P_{0}, W_{0}-C V ; \Gamma^{1}\right) d F\left(\tilde{\beta} ; \Gamma^{1}\right)
$$

In practice, CV may be approximated by specifying an appropriate functional form for $\hat{V}($.$) and F($.$) and calculating C V$ for changes in Γ. This is a difficult but clearly interesting task, the implementation of which is beyond the scope of this thesis. In the remainder of this chapter, however, we focus on interpersonal comparisons of risk preferences instead

3.2 Characterizing Risk Preferences

Much of the analysis of decision making under risk is based on the expected utility (EU) theory, which in some form dates back to the last century $[100,73]$. The assumptions of EU model have been the subject of much debate and refinement since the work of von Neumann and Morgenstern was first published in 1947 [112].

Within the confines of the expected utility theory a number of analytical tools have been developed that help characterize individual behavior in the presence of risk. These include measure of risk aversion based on individual's utility function, measure based on the parameters of distribution of random variables such as the mean and variance, and finally measures independent of the specific parameterization of utility or distribution functions such as stochastic dominance criteria $[8,33,34]$.

Recently, the EU hypothesis has been empirically tested in numerous studies. Based on frequent empirical rejection of the theory a large body of economic literature has been critical of EU model. Machina [73] provides a recent comprehensive survey of this literature. Because of the unsatisfactory nature of the suggested alternatives, the consensus among practitioners still appears to favor the EU model. For the analysis undertaken here the EU model remains to be a useful tool.

In the majority of analysis using the EU model, risky outcomes are associated with a single random variable, often individual's wealth. Accordingly, the analytical tools developed have been
appropriate for this univariate risk. Multivariate risk, which is a main feature of the attribute model, has received much less attention until recently. However, most analytical tools of the univariate analysis have been generalized to multivariate case. Hence the contribution of this thesis will not be in developing new analytical tools but rather in surveying and applying the existing tools to problem presented in the attribute model.

The multivariate risk associated with the attribute model can be best analyzed by considering the utility function in 3.1.1;

$$
u\left(C_{0}, W_{1}, Z_{1}, \ldots, Z_{r^{\bullet}}, Z_{1}^{u}, \ldots, Z_{n}^{u}\right)
$$

Because of the risk associated with the asset characteristics and the terminal asset prices, both the terminal wealth and the portfolio attributes (the Z^{\prime} 's) appearing in the utility function are random.

The interdependence between asset prices and the terminal wealth on one hand and the asset characteristic and portfolio attributes on the other, implies that the random arguments in $u($.$) are$ jointly distributed. This representation of the utility function captures the trade off between current and future consumption through the attributes of the selected portfolios. That is, higher quality assets may be more costly now but they offer the possibility for greater future appreciation.

The required axioms for the existence of a utility function representing univariate risk, e.g., reflexivity, transitivity, etc., may be generalized to n dimensions. Fishburn [30] has shown that the multidimensional versions of these axioms provide the necessary and
sufficient conditions for the existence of a well behaved multivariate utility function. In the construction of the attribute model in section 2.2, it was assumed that individual's preferences satisfy these axioms.

Extending the concepts of risk aversion and stochastic dominance to the multiattribute utility functions has been undertaken in a number of studies. Before proceeding with a discussion of their findings, however, we note that the arguments appearing in the utility function and the reasons for their randomness has varied widely. In the early literature on multivariate risk, e.g., Fishburn [29], Poliak [85], Stiglitz [107], Keeney [47, 48, 49, 50], Kihlstrom and Mirman [53], Levy [66], Duncan [23], Karni [46], and others, utility functions are defined over a vector of commodities consumed. Randomness in consumption of these commodities may be due to errors in optimization or other reasons such as pure noise.

More recently, Epstein [24], Finkelshtain and Chalfant [27, 28], Boyle [14], and other researchers have considered the uncertainty due to randomness of arguments in the indirect utility function, e.g., prices (consumption goods or produced goods) and wealth. Finally, in the finance literature, multivariate risk has been associated with rate of returns (often assumed to be jointly normally distributed), e.g., Cass and Stiglitz [20], Li and Ziemba [69], Rubinstein [94] ; randomness of wealth at different points in time as in Ross [91] ; or the randomness of consumption prices as in Finkelshtain and Chalfant [28].

Efforts in characterizing behavior in the presence of multivariate risk has been directed at generalizing the results obtained in the univariate case. The structure of the utility function, e.g., additive, and the joint distribution of the attributes, e.g., normal, have played an important role in the development of this theory.

Generally, simple analogs of the results similar to those in the univariate case have not been available without strong restrictions on preferences and / or the joint distributions of the random variables. No empirical tests of the validity of such restrictions or the consequences of their violation is offered in this literature. An important example of this type of convenient, but unrealistic, assumption is the time additive utility of consumption representation which is widely used in the analysis of intertemporal consumptioninvestment model in the literature. This assumption has been criticized as a possible reason for some of the capital market anomalies identified in the empirical finance literature (see Browning [18])

3.3 Measuring Risk Aversion

Arrow [3] and Pratt [86] developed the theoretical foundations for the measurement of risk preferences in the presence of univariate risk. The absolute and the relative risk-aversion functions were developed based on the notion that risk averse agents would be willing to pay a premium so as to avoid uncertainty. The size of this premium and hence the degree of individual's aversion to risk is measured by the absolute risk aversion function.

Risk aversion measures and the concept of risk premium have been generalized to the multivariate case. These generalizations have mostly preserved the definitions and the approach pioneered by Arrow and Pratt. Early work in this area includes Richard [89], Duncan [23], and Karni [46]. In two recent studies, Finkelshtain and Chalfant [27, 28] (hereafter referred to as FC) have synthesized this literature and have defined multivariate measures of risk premia and risk aversion. They also have established the necessary and sufficient conditions under which univariate and multivariate measures of risk aversion coincide.

In this section we utilize the concepts suggested in the CF studies to define measures of risk premium and risk aversion that are suitable for the single period attribute model. While our approach is identical to that of CF, important differences arise and these will be drawn out in the remainder of this chapter.

Consider the utility function in the single period attribute
model

$$
u\left(C, W, Z_{1}, \ldots, Z_{r^{*}}, Z_{1}^{u}, \ldots, Z_{n}^{u}\right)=u\left(C, W, Z_{r}\right)
$$

where the subscripts on C and W have been dropped. For any given consumption and portfolio choice define the risk premium I I as the maximum monetary value an individual is willing to pay so as to stabilize the end of period wealth while the portfolio attributes remain random. ${ }^{28}$ Based on this definition the value of $I I$ may be obtained from the following relationship :

$$
\begin{equation*}
E u\left(C, W, Z_{r}\right)=E u\left(C-\Pi, \bar{W}, Z_{r}\right) \tag{3.3.1}
\end{equation*}
$$

This definition is indicative of the fact that in the single period setting once a portfolio has been selected, investors must give up current consumption so as to pay the risk premium required to stabilize terminal wealth at its expected value W. In the FC studies the premium effects wealth rather than consumption. This is the fundamental difference between the two models. Following FC, the Taylor approximation of 3.3 .1 around the mean of the random variables W and Z_{r}, and the current consumption for a given portfolio choice \bar{X} may be solved for I;

$$
\begin{equation*}
\Pi=-0.5 \sigma_{W}^{2} \frac{u_{W W}}{u_{C}}-\sum \sigma_{W z_{i}} \frac{u_{W Z_{i}}}{u_{C}} \tag{3.3.2}
\end{equation*}
$$

where σ_{W}^{2} is the variance of terminal wealth, $\sigma_{W} z_{i}$ is the covariance of wealth with the $i-t h$ portfolio attributes, and $\boldsymbol{u}_{\boldsymbol{j}}$ is the derivative

[^20]with respect to the $\boldsymbol{j} \boldsymbol{-}$ th argument of utility function. ${ }^{27}$
As is apparent, the size of this risk premium is critically dependent upon the curvature of the utility function and the size of the variance and covariance terms. There are two special cases which help determine the sign of Π. First, if individual's utility function is additive in its argument (i.e., $u_{W Z_{i}}=0$), and second when portfolio attributes are non-random (i.e. $\sigma_{W Z_{i}}=0$). In both cases the second term in 3.3 .2 will vanish and the premium will be positive and a function of the Arrow-Pratt measure alone. When the second term in 3.3.2 is non-zero, however, the risk premium measure will be much different in size and possibly sign than its univariate counter part.

Suppose the investors utility function has the following properties: $u_{W}>0$, $u_{W W}<0$, $u_{C}>0, u_{C O}<0$, and $u_{W} z_{i}<0$. It follows then that for a given utility function and σ_{W}^{2}, the risk premium will decrease if the covariances of wealth and portfolio attributes are negative. This suggest that risk averse investors may prefer portfolios with a larger number of attributes that are negatively correlated with wealth. Note that the covariance structure of the attributes does not affect the size of II.

Based on the above definition of risk premium, FC define a risk aversion matrix whose elements are the utility curvature terms. They show that if this matrix is positive semi-definite then $\Pi \geq 0$. However, this would imply the utility function is additively separable

[^21]in its arguments, which is indeed a very strong restriction, and as argued earlier, should be tested empirically. ${ }^{28}$ The CF studies also explore interpersonal comparison of multivariate risk and the conditions under which two individuals would invest in the same portfolio. We refer the interested reader to their study and briefly discuss the multivariate stochastic dominance measures instead.

[^22]
3.4 Stochastic Dominance Measures

Stochastic Dominance (SD) criteria have been an important tool for ordering risky alternative under univariate risk; see [92, 93], [33] and [34]. There are two methods of ordering random outcomes by the SD criteria. One places some minimum restriction on the utility function and rank alternatives for a wide class of distributions, e.g., the first and second-degree dominance (FSD, SSD) [8]. The other ranks alternatives for different specification of the utility function.

In manners reminiscent of the univariate risk, the SD criteria has been extended to the multivariate case by Huang et al [39, 40], Levhari et al [65], Levy and Paroush [68, 67], Russel and Seo [98], and others. These researchers have attempted to place few restrictions on the utility function or the distribution of random variables. We conclude this chapter by describing some of these criteria in the context of the attribute model.

The first multivariate dominance criteria (MDC) we consider is due to Levy [66]. According to his criteria, among the (joint) distributions for attributes and wealth, those with higher probability of wealth for the same level of other attributes will be preferred by risk averse agents. This is a FSD ordering and it requires positive marginal utility of wealth and portfolio attributes. Note that this criteria requires knowledge of the conditional distribution of wealth, which in empirical work may be difficult to estimate.

Huang et al [40] show that if the utility function is additive in its arguments, then both the FSD and the SSD criteria
would involve the comparison of the marginal density function of each attribute and wealth. This implies that attribute by attribute dominance is necessary and sufficient for overall FSD or SSD.

In a related paper, Huang et al [39] have shown that identical results can be derived for the case of non-additive utility functions provided that the random variables are statistically independent. Again dominance for each variable in necessary and sufficient for the overall dominance. Needless to say both these assumptions may be suspect in many real world situations.

An important alternative to additivity and statistical independence may be to create a summary measure of all portfolio attributes which could reduce the number of arguments in the utility function to a more manageable size. Also, if terminal wealth could be expressed as a function of all attributes, univariate analysis may be used to rank different alternatives. However, since unique attributes of assets are likely to enter the utility function, these later alternatives should be used carefully.

In the empirical portion of this dissertation, asset prices and their attributes are related in an ex post sense. There it is assumed that the attributes are known with certainty. Before describing the results of the empirical section, however, we discuss the generality of the attribute model in the next chapter.

4 The GAPM as A. Unifying Framework

To demonstrate the generality of the attribute model, this chapter shows that several prominent portfolio choice models in finance are subsumed in the present framework. This implies that once the appropriate restrictions are imposed upon the attribute model, the conclusions emerging from it may be consistent with those from other existing models in finance.

The attribute model could shed light on aspects of portfolio choice decisions which are unexplained by the standard models. This is because of the possibility to test alternative asset pricing models as its special case. The attribute framework therefore offers a richer means of obtaining testable hypothesis regarding individual behavior.

4.1 The State-Preference Model

In the state-preference model of Arrow [2], the state of nature, $s \in S$, determines the payoffs to an individual's portfolio decisions $w_{0}=$ $w(s, x)$, where w_{0} is the wealth in state s when the individual holds portfolio $\pi .{ }^{29}$ Preferences are formed over these contingent payoffs: $u(Z)=u\left(w_{s}\right)=\sum_{s=1}^{S} f_{s} u\left(w_{a}\right)$, where the f_{a} are non-negative numbers. ${ }^{30}$

Utility is maximized via the portfolio choice x and subject

[^23]to a budget constraint $W=p^{\prime} x$ where W is initial wealth and p is the vector of 'spot' asset prices. The individual's wealth in each state is $w_{s}=p_{s}^{\prime} x$, where p_{s} is the vector of state contingent prices ($p_{i s}$ is the typical element). In a manner similar to the developments in section 2.3 (proposition 1), the first-order condition for an optimum portfolio decision may be written as:
\[

$$
\begin{equation*}
p_{i}=\sum_{s=1}^{S}\left(\frac{f_{*}}{\theta} \frac{\partial u}{\partial w_{s}}\right) p_{i s}=\sum_{s=1}^{S} \theta_{s} p_{i n} \quad \forall i=1, \ldots, N \tag{4.1}
\end{equation*}
$$

\]

Here θ_{a} is the Arrow-Debreu price of the payoff in state s. The similarities of the state preference model and the attribute model are readily observable: The payoffs in different states $w(s, x)$ are equivalent to the attributes Z and the Arrow-Debreu prices are the shadow price of these attributes. Note that since the states are uncertain, the payoffs, which are the arguments in the utility function, will be random variables.

4.2 The Parameter Preference Model

The parameter preference model (PPM) was originally formulated as a two-parameter model by Markowitz [74]. A generalized version of the two-parameter model was developed by Rubinstein [95] and others.

The PPM greatly simplified the problem of uncertainty, by assuming that individuals form preferences over a amall number of parameters relating to the distribution of asset prices. To see this, consider a two-parameter version of the PPM (the mean-variance preference model) in which utility is dependent on two parameters of the wealth distribution, $F(w)$ - the mean, defined as $m(F)=$ $\int_{6}^{\gamma} w d F(w)$, and other moment measuring the degree of risk, defined as $v(F)=\int_{6}^{\gamma}|w-\mu|^{\alpha} d F(w)$.

The parameters μ (a reference level of expected wealth), γ and δ (the range of wealth), and α (a scaling parameter) determine which class of the PPM models is obtained. For example, to obtain the mean-variance model of Markowitz, we set $-\delta=\boldsymbol{\gamma}=\infty$, $\mu=m(F)$ and $\alpha=2$. Now the utility function defined on wealth takes the form $u(Z)=u(m, v)$ and again the first-order conditions for a maximum may be solved for prices as: ${ }^{31}$

[^24]\[

$$
\begin{equation*}
p_{i}=\left(\frac{1}{\theta} \frac{\partial u}{\partial m}\right) \frac{\partial m}{\partial x_{i}}+\left(\frac{1}{\theta} \frac{\partial u}{\partial v}\right) \frac{\partial v}{\partial x_{i}}=\theta_{m} \mu_{i}+\theta_{v} \sum_{j}^{N} \sigma_{i j} x_{j} \tag{4.2}
\end{equation*}
$$

\]

where μ_{i} is the expected price of the i-th asset, $\sigma_{i j}$ is the covariance between the i -th and j -th asset prices, $\boldsymbol{\theta}_{m}$ and $\boldsymbol{\theta}_{v}$ are the shadow prices of the portfolio mean and variance, and θ is the marginal utility of wealth. Other versions of the PPM are obtained by setting alternative restrictions on δ, γ, μ and α.

The parallels to the attribute model may be drawn as follows: the pricing relationship in 4.2 is linear in the attributes (mean, standard deviation, and covariances) and θ_{m} and θ_{v} are the shadow cost of a marginal change in these attributes.

4.3 The Capital Asset Pricing Model

The capital asset pricing model of Sharpe [103] and Lintner is the market equilibrium version of PPM of Markowitz. There are numerous versions of the CAPM in use. We will examine the original version, which assumes homogeneous beliefs regarding the distribution of returns. As noted earlier, this corresponds to a common attribute technology in our terminology.

In the original CAPM, investor preferences are defined over the expected return and variance of wealth, and individuals have homogeneous expectations. The latter assumptions permit the aggregation of asset demand functions across individuals. Upon the imposition of the market clearing conditions (and other restrictions), the resulting mean-variance efficient model takes the form (see Fama [25], pp. 305-313)):

$$
\begin{equation*}
p_{i}=\theta_{1} \mu_{i}+\theta_{2} \beta_{i M} \tag{4.3}
\end{equation*}
$$

where $\theta_{1}=\left[1+r_{f}\right]^{-1}, \theta_{2}=-\theta_{1}\left[\mu_{M}-\left(1+r_{f}\right) p_{M}\right], \beta_{i M}=\sigma_{i M} / \sigma_{M}^{2}$, r_{f} is the risk-free rate of interest, and p_{M} and μ_{M} are the current and the expected (end of period) values of the market portfolio.

The interpretation of (4.3) is that, in an efficient market the price of each asset embodies two components: an expected end of period market value, μ_{i}, and the risk factor, $\beta_{i M}$. The unit price of these factor are θ_{i} 's, respectively.

The standard CAPM has been improved in a number of
ways. Fama (pp. 314-319) relaxes the homogeneous expectations assumption. He shows that, in the case of heterogeneous expectations, the equation corresponding to (4.3) will be:

$$
\begin{equation*}
p_{i}=\theta_{1} \mu_{i}^{\prime}+\theta_{2}^{\prime} \beta_{i M}^{\prime} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{gathered}
\theta_{1}=\left[1+r_{f}\right]^{-1}, \theta_{2}^{\prime}=-\theta_{1}\left[\mu_{M}^{\prime}\left(1+r_{f}\right) p_{M}\right] \\
\mu_{i}^{\prime}=\frac{\sum_{h}^{H} \alpha^{h} \mu_{i}^{h}}{\sum_{h}^{H} \alpha^{h}}, \quad \beta_{i M}^{\prime}=\frac{\sum_{h}^{H} \sigma_{i w}^{h}}{\sum_{h}^{H} \sigma_{M v}^{h}} \\
\alpha^{h}=\frac{\partial v^{h}}{\partial m^{h}}, \text { and } \sigma_{i w}^{h}=\sum_{j}^{N} \sigma_{i j}^{h} x_{j}^{h}
\end{gathered}
$$

The superscript h continues to refer to an individual among H investors. Equation (4.4) has the same form as the CAPM and the attribute model and similar interpretations may be attached to μ_{i}^{\prime}, θ_{2}^{\prime} and $\beta_{i M}^{\prime}$. However, in general $\mu_{i}^{\prime}, \theta_{2}^{\prime}$ and $\beta_{i M}^{\prime}$ cannot be inferred from observed data, since they depend on individual assessments (beliefs).

The recognition that investors may be concerned with other variablea in addition to the mean and variance has led to the development of the K-parameter versions of CAPM (with or without the homogeneous beliefs assumption). In general, with K parameters, the efficient frontier will be in a K-dimensional space and in an efficient market, all assets will be represented by points on this surface.

A particularly interesting version of the K-factor model is due to Rubinstein [95], who defines preferences over the n moments of wealth distribution. The first order necessary conditions, which have been aggregated over investors, include shadow prices with respect to the n moments of the wealth distribution and are analogous to the attribute model.

Others have considered factors other than those characterizing the returns distribution. Sharpe [102] considers liquidity, defined as the differential in the cost of buying and selling assets, or their bid-ask spread, as an important parameter effecting portfolio decisions. Denoting this factor by l_{i}, he derives the equilibrium condition for this version of CAPM as:

$$
\begin{equation*}
p_{i}=\theta_{1} \mu_{1}+\theta_{2} \beta_{i M}+\theta_{3} l_{i} \tag{4.5}
\end{equation*}
$$

Equation (4.5) defines the security market 'plane' in an efficient market. Given $\beta_{i M}$, the greater the bid-ask spread, the lower the expected price, and given μ_{1}, the greater $\beta_{i} M$, the greater the liquidity.

An example of other factors that influence preferences are taxes. Brennan [16], Litzenberger and Rarnaswamy [70, 71], and others have integrated tax considerations into the CAPM. The motivation for these models is the observation that, because of differential taxes, individuals may prefer capital gains to dividends.

Brennan proposed a version of the CAPM that accounts
for the taxation of dividends with constant individual tax rates. Litzenberger and Ramaswamy [71] extended this model to account for progressive taxation. These refinements bring other factors to bear on asset prices and further demonstrate the generality of the attribute model.

4.4 The Intertemporal Capital Asset Pricing Model

Merton [78] extended the simple CAPM to an intertemporal setting in which the investment opportunities set evolves stochastically. Building on Merton's model, Breeden [15] allowed the consumption opportunities as well as investment opportunities to be stochastic. Below we briefly demonstrate the consistency of the attribute framework with these intertemporal models

In Merton's model the stochastic relation between the state variables is determined by a multidimensional Ito process. The state variables considered include the current level of wealth $w(t)$ and a vector of state variables, $S(t)$, which characterizes the changing investment opportunities. The vector $S(t)$ contains the current and expected asset prices, as well as their standard deviations.

Let $J(w(t), S(t), t)$ be the indirect utility function of wealth resulting from following an optimal consumption-investment strategy, $\forall t \in[t, T]$. Using Bellman's principle of optimality, Merton shows that at each point in time, $J($.$) satisfies the following second-$ order partial differential system:

$$
\begin{gather*}
M a x\left[u(c, t)+J_{w} m+J_{t}+\sum_{k}^{K-2} J_{k} n_{k}\right. \\
\left.+\frac{1}{2} J_{w w w} v+\sum_{k}^{K-2} \sum_{i}^{N} J_{h w} \eta_{i k} x_{i}+\frac{1}{2} \sum_{k}^{K-2} \sum_{i}^{K-2} J_{k l} s_{k l}\right]=0 \tag{4.6}
\end{gather*}
$$

where

$$
m=\sum_{i}^{N}\left(\mu_{i}-\left(1+r_{f}\right) p_{i}\right) x_{i}+\left(r_{f} w-c\right)
$$

is the expected value of the portfolio,

$$
v=\sum_{i}^{N} \sum_{j}^{N} \sigma_{i j} x_{i} x_{j}
$$

is the portfolio variance, $\sigma_{i j}$ is the covariance between the $i^{\text {th }}$ and the $j^{\text {th }}$ asset prices, n_{k} is the expected value of the $k^{\text {th }}$ element of the state vector $S(t), s_{k l}$ is the covariance between the $k^{\text {th }}$ and $l^{\text {th }}$ elements of $S(t)$ and $\eta_{i k}$ is the covariance between the $i^{\text {th }}$ price and $k^{\text {th }}$ element of $\mathrm{S}(\mathrm{t})$. The first-order conditions derived from (4.6) are:

$$
\begin{gather*}
u_{c}=J_{w} \tag{4.7}\\
J_{w}\left[\mu_{i}-\left(1+r_{f}\right) p_{i}\right]+J_{w w} \sum_{j}^{N} \sigma_{i j} x_{j}+\sum_{k}^{K-1} J_{h w} \eta_{i k}=0 \forall i \tag{4.8}
\end{gather*}
$$

Equation (4.7) implies that the optimal consumption is determined by equating the marginal utility of current consumption and wealth (this is an intertemporal envelope condition). Inverting (4.8) the asset demand functions are obtained;

$$
\begin{align*}
x_{i}=- & \left(J_{w} / J_{w w}\right) \sum_{j}^{N} \sigma_{i j}^{-1}\left(\mu_{i}-\left(1+r_{f}\right) p_{i}\right) \\
& -\sum_{k}^{K-2}\left(J_{k w} / J_{w w w}\right) \sum_{j}^{N} \sigma_{i j}^{-1} \eta_{j k} \tag{4.9}
\end{align*}
$$

Merton's model shows that in an intertemporal setting there will be two components to the demand for assets; First the conventional demand, as in the single-period mean-variance model, and second a hedge against the adverse effects of the state variables, which act through their covariance with prices.

Note that (4.9) can be solved for p_{i} as a function of variancecovariance terms, r_{f} and other variables to obtain the relation between asset prices and the attributes:

$$
p_{i}=\theta_{1} \mu_{i}+\sum_{j}^{N} \theta_{j} \sigma_{i j}+\sum_{k}^{K-2} \theta_{k} \eta_{j k}
$$

where $\theta_{1}=\left[1+r_{f}\right]^{-1}, \theta_{j}=\left[\theta_{1} J_{w w} J_{w}^{-1}\right] x_{j}$, and $\theta_{k}=\left[\theta_{1} J_{k w} J_{w}^{-1}\right]$. Again it is simple to determine the attributes which would give rise to a pricing relationship similar to the intertemporal CAPM.

Similar results can be established using Breeden's [15] model, in which consumption opportunities are also stochastic. ${ }^{32}$ Breeden points out that in practice it may be difficult to identify the relevant (K-2) state variables. He shows that the multi-beta model is equivalent to a single-beta model in which aggregate consumption is the only state variable. He argues that correlation between asset prices and aggregate consumption is a more appropriate measure of risk than the correlation between asset prices and aggregate wealth.

When consumption opportunities are stochastic, consump-

[^25]tion has the form $c=c(w(t), S(t), t)$. From the first order conditions above we have $J_{w w}=\boldsymbol{\psi}_{x} c_{w}$ and $J_{w k}=u_{\infty} c_{h}$. Substituting these into (4.8) and rearranging we obtain:
\[

$$
\begin{equation*}
T_{c}\left[\mu_{i}-\left(1+r_{f}\right) P_{i}\right]=\sigma_{i w} c_{w}-\sum_{k}^{K} \eta_{i k} c_{h} \tag{4.10}
\end{equation*}
$$

\]

where $T_{c}=-u_{c} / u_{c c}$ is the individual's absolute risk tolerance defined on consumption. From $c(w, x, t)$ we also have; $d c=c_{w} d w+$ $\Sigma_{k}^{K} c_{k} d S_{k}$, which shows that changes in consumption are linearly related to changes in wealth and the state variables. Multiplying this expression by p_{i} and taking expectations gives:

$$
\begin{equation*}
\sigma_{i c}=\sigma_{i w} c_{w}+\sum_{k}^{K} \eta_{i k} c_{k} \tag{4.11}
\end{equation*}
$$

This allows us to substitute for $\sigma_{i c}$ in (4.9). With this substitution we see that optimal portfolio choice requires that the covariance of each asset price with optimal consumption is proportional to that asset's expected excess return. The price relation obtained from the counter part of (4.9) for the the intertemporal Consumption CAPM is:

$$
\begin{equation*}
p_{i}=\theta_{1} \mu_{i}+\theta_{2} \beta_{i c} \tag{4.12}
\end{equation*}
$$

where

$$
\begin{gathered}
\theta_{1}=\left[1+r_{f}\right]^{-1}, \\
\left.\theta_{2}=-\theta_{1}\left[\mu_{M}-\left(1+r_{f}\right) p_{M}\right)\right] / \beta_{M_{c}},
\end{gathered}
$$

$\beta_{i c}=\sigma_{i c} / \sigma_{c}^{2}$, and $\beta_{M c}=\sigma_{M c} / \sigma_{c}^{2}$ are the asset and consumption betas.

Breeden argues that in equilibrium, the risk associated with an asset may be represented by a single aggregate consumption beta. This is an important simplification relative to the multi-beta relation. ${ }^{33}$ The equilibrium pricing relation in (4.12) is clearly an attribute pricing model, in which two principal characteristics, μ_{i} and $\beta_{i c}$ determine the returns on asset i.

[^26]
4.5 The Accounting Valuation Models

The valuation models originating in the accounting literature associate asset prices (firm value) with the information contained in financial statements. Accounting models, similar to arbitrage pricing models, are not based on models of investor preferences. Asset prices are assumed to depend upon discounted future earnings of the asset. It follows from this causal relation that asset prices are related to factors which influence expected earnings.

Based on this reasoning, most accounting models simply assume that asset prices are functions of information variables. A variety of models based on this premise have appeared in this literature. Some importent work includes Miller and Modigliani [79], Beaver, Lambert, and Morse [9], and Ohlson [82, 83].

In the highly celebrated 'clean surplus' model of Ohlson [82], the market value of firms' common stocks at any point in time, p_{t} is assumed to be a linear function of earnings realized during the past period e_{t}, the book value y_{t}, dividends per share d_{t}, and a vector of 'other' value relevant information, v_{t} :

$$
\begin{equation*}
p_{t}=\theta_{1} e_{t}+\theta_{2} y_{t}+\theta_{3} d_{t}+\theta_{4} v_{t} \tag{4.13}
\end{equation*}
$$

The Miller-Modigliani [79] dividend irrelevancy theorem states that changes in the book value of a firm are off set by its dividend payments. Since asset prices will be reflective of book values, dividend policy should not effect prices. The Clean Surplus Equation, $y_{t}=y_{t-1}+e_{t}-d_{t}$ is a consequence of this theorem and may
be substituted in (4.13). This substitution permits one to eliminate dividends and focus solely on accounting earnings, book value, and other variables as determinants of prices.

Future values of these variable are assumed to be generated by a 'linear information dynamics' (a Markovian stochastic process). This enables the researcher to obtain an estimate of the expected value of explanatory variables. Assuming risk neutral agents, the expected price of the asset will be determined by the expected values of these variables and the θ^{\prime} s. Amir [1] provides an empirical examination of this model.

The attribute model provides an important justification for relating asset prices to value-relevant signals. However, the model also suggests that the relation between prices and the value-relevant variables will not necessarily be linear (see Das and Lev [21]). In the next chapter we discuss the empirical examination of the attribute model.

5 An Empirical Evaluation

To facilitate a preliminary empirical test of the attribute model we invoke a number of simplifying assumptions:
I. Each asset or group of assets such as common stocks, has only one unique attribute. Now any asset may be characterized by $r^{*}+1$ attributes. The dimension of β will be $s=n \times\left(r^{*}+1\right)$. A portfolio of assets, or the market portfolio, will be characterized by $Z \in R^{m}$ attributes, where $r^{*}+1 \leq m \leq r^{*}+n$.
II. The transformation functions for portfolio attributes are separable and linear ;

$$
z_{k}=G_{k}\left(X ; b_{i k}, i=1, \ldots, n\right)=\sum_{i=1}^{n} b_{i k} x_{i}
$$

where $b_{i h}$ is the amount of $k^{\text {th }}$ attribute in asset i. Unique portfolio attributes are defined by $z_{i}^{2}=G_{i}\left(x_{i} ; 1\right)=x_{i}$.

This simply implies there is one unit of unique attribute per unit of any asset. In an applied study of demand for nutrients Ladd and Suvannant [57] invoke this assumption for foods. It is assumed that the obtainable amounts of attributes in assets represented by $\boldsymbol{\beta}$ is the same for all investors. Investors are distinguished by superscripts h. There are H investors in the market.
III. To include current consumption decisions into the analysis we assume that one attribute entering the utility function is current consumption: $C=W-P^{\prime} X$. With this representation, the
shadow costs associated with obtaining a portfolio attribute will be measured in terms of foregone current consumption.

In this manner, it is possible to integrate future consumption into the model as well. In that case, the shadow cost will be a measure of exchanging current consumption with attributes and future consumption. For simplicity sake this step will not be adopted.

The formal statement of investor's problem is: Choose \boldsymbol{X} so as to

$$
\begin{equation*}
\operatorname{Max} u(Z)=u\left(C, z_{1}, \ldots, z_{r^{*}}, z_{1}^{u}, \ldots, z_{n}^{u}\right) \tag{5.1}
\end{equation*}
$$

subject to

$$
C=W-P^{\prime} X, z_{k}=\sum_{i=1}^{n} b_{i k} x_{i} \text { and } z_{i}^{u}=x_{i}
$$

where the initial wealth (W), asset prices (P), and the asset quality parameters (β) are assumed exogenous and non-stochastic.

Using these assumptions, the price decomposition equation for problem (5.1), derived in proposition (1), may be written as:

$$
\begin{equation*}
p_{i}=\theta_{i}^{h}+\sum_{k=1}^{r^{*}} \theta_{k}^{h} b_{i h} \tag{5.2}
\end{equation*}
$$

where $\theta_{i}^{h}=\partial C / \partial z_{i}^{\mu}$ and $\theta_{h}^{h}=\partial C / \partial z_{h}$ are the shadow costs of attributes for individual h, and $\beta_{i}=\left(1, b_{i 1}, \ldots, b_{i r^{*}}\right)$ is the same for all investors.

Equation (5.2) or its equilibrium version derived below, permits us to recognize explicitly a number of issues. First, there are three possible sources of uncertainty that could influence the price
decomposition equation: prices, θ^{\prime} s, and β. As we argued in chapter 3, uncertainty induced by a stochastic $\boldsymbol{\beta}$ seems most reasonable since P represents currently observable prices and investors can be assumed to know their own valuation of any attribute.

As shown in chapter 3, in either of these cases, the maximization of expected utility will require taking the expectation of this relationship with respect to the joint distribution of the random variables. Note also that the stochastic path of prices will be influenced by the path of β and θ vectors.

Second, using equation 5.2, it is possible to see the implication of assuming a separable linear attribute production technology, a linear budget constraint, and homogeneous beliefs. These assumptions permit the aggregation of 5.2 across individuals such that asset prices may be expreased as a weighted linear function of their attributes. The weights are simply the average of the values assigned by the individual investors. Formally,

$$
\begin{equation*}
p_{i}=\bar{\theta}_{i}+\sum_{k=1}^{r^{*}} \bar{\theta}_{k} b_{i k}+\epsilon_{i} \tag{5.3}
\end{equation*}
$$

where p_{i} is the price of the $i^{\text {th }}$ asset, $b_{i k}$ is the amount of $k^{\text {th }}$ characteristic in asset i,

$$
\bar{\theta}_{i}=\left[\sum_{h=1}^{H} \theta_{i}^{h}\right] \times H^{-1}
$$

and

$$
\overline{\theta_{k}}=\left[\sum_{h=1}^{H} \theta_{h}^{h}\right] \times H^{-1}
$$

measure the shadow value of asset i 's unique and common attributes, and ϵ_{i} is a random error term, whose distributional properties will be discussed below. Note that the intercept term in 5.3 is a measure of the shadow cost of holding a particular asset i and indicates the relative importance of two assets which may be identical in every other attribute.

This price decomposition equation is the starting point for the empirical examination of the attribute model. The estimation of the attribute model represented by (5.3) requires explicit consideration of several issues. These are briefly discussed under the following headings.

5.1 Selecting the Relevant Assets

The question of what constitutes the set of marketed assets ($i=$ $1, \ldots n$) is an important problem in financial economics. In criticizing the tests of the CAPM, Roll [90] argues that all available assets, including human capital, influence an individual's intertemporal decisions. Therefore the 'market portfolio' proxies used to test the CAPM must account for this fact. He shows that the inability to form such proxies implies that the CAPM is not testable.

In the attribute model, no restrictions are placed on the types of assets which influence individual choice. So long as the purchase or sale of an asset affects the wealth constraint, a relationship between the asset's price (cost) and its attributes is implied (proposition 1, equation 2.3.1).

As noted before, in the general model, the price decomposition equation derived from the first order conditions of the portfolio choice problem implicitly depends upon the demand for other available assets. This dependence will arise from either nonlinearity in the attribute production technology or a nonlinear budget constraint.

In the construction of the model in 5.1 these possibilities were assumed away so that 5.3 is linear in $b_{i k}$'s. Therefore, estimation may proceed by utilizing time series data on prices and characteristics of a given asset, say the stock of IBM, or a cross-section of asset prices and attribute may be used to estimate shadow prices at a point in time.

Cross-sectional examination of equation 5.3 requires further simplifications. Suppose investors choose among broad classes of assets auch as stocks, mutual funds, bonds, real estate, etc. Furthermore, let each category be distinguished by a single unique attribute. Now it is possible to show that equation (5.3) must hold for each category of assets.

Focusing on category i, say common stocks, the vector p_{i} will be the prices of different firms' common equity and the vector $b_{i k}$ will contain their $k^{\text {th }}$ attribute and the vector $\bar{\theta}$'s will contain the estimated shadow prices of these attributes at a point in time.

An important feature of the model presented in this dissertation, and one which has not been studied elsewhere, is the fact that the intercept term, $\bar{\theta}_{i}$, provides an estimate of the price premium associated with common stocks' unique attribute. This premium distinguishes stocks from other assets and could help explain why some investors may not invest in stocks. The foregoing simplifications are incorporated into the model estimated below.

5.2 Selecting the Attributes

Determining the appropriate set of common attributes appears to be a formidable task. Regardless of the care taken, the choice may seem ad hoc. One way to deal with this problem is to directly survey investors through an organization such as the American Association of Individual Investors (AAII) and ask them to list the types of characteristics they value in assets. This would be interesting but is clearly outside the present scope of this work. ${ }^{34}$ In the absence of such direct information, we rely on the existing applied literature.

Most empirical tests of asset pricing models assume that the value of factors that determine asset prices (e.g., mean and variance returns) is the same for all individuals, and investors' perceptions regarding the attributes are homogeneous. Similar assumptions underly the analysis in the present study. The amount of attributes obtained from assets is assumed to be the same for all investors and they all know this fact.

It should be noted, however, that studies in consumer economics and marketing indicate that perceptions, which provide important impetus to purchase decisions, are more likely to be heterogeneous. Research shows that in the presence of risk, heterogeneity of individual behavior is a direct result of varied perceptions. ${ }^{35} \mathrm{Al}$ -

[^27]lowing for the heterogeneity of perceptions is one possible direction for improving the attribute model in the future.

The role of perceptions in explaining the observed differences in investor behavior has been long recognized in financial economics and researcher have recently begun to study the consequences of perception heterogeneity for the capital market equilibrium [4]. However, since the aggregate market data provides no information about individual investors' perceptions, it has proved difficult to empirically assess the impact of heterogeneity.

Generally, competition among inveators and government regulation have been assumed to result in equal access to information. Furthermore, legal restrictions, institutional rules, and independent ranking agencies (e.g. Standard and Poors) have forced a relatively accurate disclosure of information and reduced the differences in individual perceptions. These institutional characteristics of financial markets provide some justification for assigning a minor role to diversity of perceptions.

Financial markets are characterized by considerable availability and continuous generation of new information. The majority of this information appears in the form of, or is related to the items in a firm's financial statements. The COMPUSTAT financial files are the primary source of such statements for a large proportion of firms. COMPUSTAT provides a combined coverage of over 7000 firms from the period 1950 through 1990. A large portion of the firm specific information (350 items) available for the fiscal year 1988 are
utilized for this study. The attribute selection criteria are based on the results of previous studies in different fields of economics.

Capon, Farley, and Hoenig [19] provide a meta-analysis of over 300 published studies relating environmental, strategic, and organizational factors to various indicators of the financial performance of firms. They identify over 200 variables that have been shown to influence several indices of firms' performance (p. 1150).

These explanatory variables include many of those studied in finance, accounting, management sciences, industrial organization, and other branches of economics. Based on this survey, we construct a list of general categories of attributes that should be considered. The attributes selected for this study belong to at least one of the several broad categories that are presented in table 1.

After selecting the basic attributes from the COMPUSTAT data files, new variables are created by combining some of them. These include variables associated with the non-calendar based anomalies such as the size effect, the capital structure, the tax effect and others. This selection process insures that a variety of variables whose importance has previously been considered in isolation will be studied together.

The majority of variables contained in the COMPUSTAT files are accounting data. These are derived from three types of statements: the balance sheet, the income statement, and the cash flow statement.

The balance sheet presents the current financial condition

Table (1): General Classifications of Stock Attributes

Category	Measures
Market Power	Industry Concentration Ratios and Market Share
Growth Potential	Growth in Sales, Size of Assets, and others
Capital Investment	Investment in Land, Machinery, and Technology
Size of Operations	Size of Assets, Sales, and Number of Employees
Sales Expansion	Advertising and Marketing Expenditures, Product Promotion
Diversification	Spatial Dispersion of Operations, Sales, and Production, Variety of Output, Vertical and Horizontal Integration
Product Development	Expenditure on Research and Development, Product Diversification
Production Efficiency	Capacity utilization, Economies of Scale, Inventories, Production Technologies utilized, etc.
Financial Efficiency	Debt Structure, Returns on Equity, Profit Margin, Many others
Quality of Business	Expenditures on Philanthropic Activities, Social Responsibility Environmental Activities, Hiring Practices, etc.
Characteristic of Products	Consumer Versus Durable Goods, Others
Management Control	Public Versus Private ownership, Management Style
Asset Liquidity	The Bid-Ask Spread, The Exchange on which the Stock is Traded Intemational Sales of the Stock, etc.
Others	Number of years in Business, Outside Rankings of the Firm Assets

of the firm, a snapshot at the close of an accounting period. The income statement summarizes profit performance over a specified period, showing how resources were utilized over time to produce a profit or loss. The cash flow statement reports the movement of cash into and out of the company over the year.

We use accounting studies to select variables from all three accounts as desirable attributes. These studies include the classic Ball and Brown [5], Beaver, Lambert, and Morse [9], and Penman and Ou [84], Lev [63], Ball, Kothari, and Watts [6], and the more recent studies such as Finger [26], Shroff [104], Soffer [101], and Hand [35].

The following systematic steps have been taken prior to estimating the attribute model.
I. To reduce the possibility of introducing measurement or estimation error into the analysis we focus on firms whose financial data are in their final updated form rather than management estimates (COMPUSTAT variable UCODE = 3).
II. A total of 68 variables from the 1988 data are selected for a total of 2210 firms. Each variable is assigned a two part name consisting of a letter and their COMPUSTAT item number. Constructed variable are distinguished by an explicit name. Observations with missing values, or negative or zero prices, or negative sales (one firm) have been excluded.

This leaves a total of 2087 firms with no missing variables. Table 2 provides a list and the definition of all selected attributes.

Table (2): Description of the variables extracted from the COMPUSTAT

Var.	Definition	Unit	ES	Mean	Std Dev
PH22	The absolute high price for the year-bid for OTC	DC	-	28.02	24.90
PLO23	The absolute low price for the year-bid for OTC	DC	\cdots	14.27	14.67
PCY24	Price on the close of year (31 Dec. 1988)	DC	\cdots	18.14	18.70
PC199	Price on the close of firm's Fiscal year	DC	--	19.12	18.91
The Independent Variables					
b1	Cash and short term investments	MMD	+	188.95	861.80
b2	Receivables-total	MMD	+	120.17	346.64
b3	Inventories-total	MMD	?	123.85	692.76
b4	Current assets-total	MMD	$+$	302.31	732.86
bS	Current Liabilities-total	MMD	-	208.44	546.95
b6	Assets-rotal / Liab. \& Stkholder Equit.-total	MMD	+	2182.64	6640.92
b7	Prop., Plant, and Equip.(PPE, prod cost)	MMD	?	722.27	2247.91
b8	PPE-total(net) (C7 less of depreciation)	MMD	?	485.19	1520.12
b9	Long-term debt-total	MMD	-	286.26	722.79
b12	Total sales net of Discounts	MMD	+	1019.16	2203.01
b13	Oper. Inc. before depr.(net sale-cost of good sold	MMD	+	133.9	308.76
bl4	Depreciation	MMD	?	39.11	91.54
bl5	Interest Expense	MMD	$?$	73.73	308.20
b16	Income taxes	MMD	-	31.52	74.65
b18	Income before extraordinary items	MMD	7	0.46	41.21
b19	Dividends-on prefered stock	MMD	7	50.50	144.94
b21	Dividends-on common stock	MMD	+	24.26	64.75
b25	Number of common shares outstanding	MM	?	28.79	49.99
b26	Dividends per share-ex date	DC	$?$	0.58	0.73
b28	Common shares traded during the cal. year	MM	?	21.29	40.69
629	Employees	M	?	7.79	19.55
b30	PPE-Capital expenditure	MMD	+	69.46	170.48
b36	Retained Eamings	MMD	$+7$	276.14	895.34
b41	Cost of good sold	MMD	-	534.50	1435.56
b42	Labor and related expenses	MMD	-	84.02	353.59
b43	Pension and retirement expense	MMD	- ?	5.39	24.97
b45	Advertising expense	MMD	+?	13.66	69.79
b46	Research and development	MMD	+	13.83	65.71
b51	Investment tax credit(income Accnt)	MMD	+	0.71	3.81
b58	Earnings per share (primary)	DC	+	1.09	2.62
b59	Inventory valuation method	code	?	16.87	57.69
b60	Common equity-total	MMD	+	434.02	1077.72
b98	Order backlog (sales and others)	MMD	?	131.84	1227.60
b100	Number of common shareholders	M	+7	12.68	31.60

The numerical part of the variables are the COMPUSTAT assigned item numbers. ES=Expected Sign of Coefficient. Units: $M=T h o u s a n d s, M M=m i l l i o n s, ~ M M D=M i l l i o n s ~ o f ~ D o l l a r s, ~ D C=D o l l a r s ~$ and Cents.

Table (2 Cont.): Description of the variables extracted from the COMPUSTAT

The Independent Variables Continued					
Var.	Definition	Unit	ES	Mean	Std Dev
b107	Sale of PPE-last fis. year-flow of funds stat. (FFS)	MMD	7	3.94	19.62
b108	Sale of common and prefered stocks-(FFS)	MMD	?	13.11	47.18
b109	Sale of investments-(FFS)	MMD	?	51.85	433.22
b110	Total funds from operations-stat. of changes (SC)	MMD	+	63.75	187.37
bl11	Long term debt issuance-(FFS)	MMD	-	41.99	113.06
bl12	Total sources of funds-(SC)	MMD	?	116.53	750.37
bl13	Increase in investments-(FFS)	MMD	?	80.37	652.087
b114	Long term debt reduction-(FFS)	MMD	-	35.47	115.69
bl15	Purchase of common and prefered stock-(FFS)	MMD	+	13.75	66.65
bl16	Total uses of funds-(SC)	MMD	?	112.29	735.59
b123	Income before ext. items-(FFS)	MMD	7	36.47	127.12
b127	Cash Dividends-(FFS)	MMD	+	17.32	51.52
bl28	Capital expenditure-(FFS)	MMD	$+$	43.73	110.12
b129	Acquisitions-(FFS)	MMD	+ 7	14.24	60.89
b149	Audit / auditor's opinion	code	?	40.32	29.99
b172	Net income (loss)	MMD	+7	51.16	148.79
b181	Total liabilities	MMD	-	1713.18	6091.53
b216	Stockholder's equity	MMD	+	462.65	1127.98
b235	Common equity liquidation value	MMD	+	275.76	670.89
b248	Acquisition-Income contribution	MMD	+	-0.04	2.20
b249	Acquisition-sales contribution	MMD	$?$	7.69	54.65
b279	fortune rank	code	+	42.08	102.43
b280	The S \& P Bond rating	code	+	4.042	6.26
b282	The S \& P stock rating	code	$+$	9.81	8.30
b283	The S \& P commercial paper rating	code	$+$	17.84	38.77

The number part of the variables are the COMPUSTAT assigned item numbers. ES=Expected Sign of Coefficient. nUnits $M=$ Thousands, $M M=$ millions, $M M D=M i l l i o n s$ of Dollars, $\mathrm{DC}=\mathrm{D}$ ollars and Cents.

All selected variables are independent in the sense that their value can not be deduced by combining other variables on this list. All continuous variables with units of millions of dollars (MMD) have been deflated by the number of outstanding shares (variable b25) so as to obtain $b_{i k}$; the amount of attribute k per share of stock. The dichotomous variables, described below, have not been deflated.
III. Two types of variables are created using this 'raw' data. These are 'accounting ratios' and a number of qualitative binary variables. The accounting ratios and their definitions are summarized in table 3. The created ratios permit a cross sectional comparison of firms and they are used for this purpose by analysts.

These variables may be grouped in two broad categories known as the 'common size' and the 'financial' ratios. The former corrects for differentials in the size of firms' operations, while the latter measures various aspects of firm financial health. These ratios are widely used by investors. Their relevance is discussed in the standard accounting texts such as Foster [31].

The qualitative variables are defined in table 4. These are designed to measure the influence of a variety of factors. Two variables are constructed to determine if there are price effects associated with the New York (NYSE) or the American stock exchanges(AMEX).

For historical reasons, the NYSE is believed to be a more prestigious exchange. Other motivations for creating these variables arises from studies which associate different costs to the public for

Table (3): Accounting Ratios : Definitions and Means

Common-Size Ratios : Controls for size differences across firms			
A. Components of balance sheet (Assets Side)/ total assets (b6).			
Variable	Definition	Mean	Exp.Sign
bl 6	Cash / Assets	0.10	+
b2_6	Receivable / Assets	0.14	- ?
b3_6	Inventories / Assets	0.14	- ?
b4_6	Current assets / Assets	0.39	7
b7_6	PRE total / Assets	0.58	$?$
b8_6	PPE net / Assets	0.32	$?$
B. Components of balance sheet (Liab. Side \& others)/ total assets (b6)			
b5_6	Current Liabilities / Assets	0.21	-
b9_6	Debt (long term) / Assets	0.20	- ?
b181_6	Total Liabilities / Assets	0.58	-
b60_6	Common Equity / Assets	0.40	+
b36_6	Retained Eamings / Assets	0.16	7
b216_6	Stockholder's Equity / Assets	0.41	+
b235_6	Common Equ. Liquidation value / Assets	0.35	?
C. Components of income statement / total revenues (b172)			
b12_172	Sale (net) / Net Income (loss)	33.92	7
b13_172	Operating Income / Net Income (loss)	3.14	$?$
b14_172	Depreciation / Net Income (loss)	1.18	?
b15_172	Interest expense / Net Income (loss)	3.13	- ?
b16_172	Income taxes / Net Income (loss)	0.62	- ?
b41_172	Cost of goods sold / Net Income (loss)	18.24	- ?

Table (3-Cont): Accounting Ratios : Definitions and Means

Financial ratios : Cross Sectional measure of firms financial conditions

A. Cash position: the higher the ratios, the higher the firms available cash resources.

Variable	Definition	Mean	Exp.Sign
b1_5	Cash / Current Liabilities	2.32	+
b1_12	Cash / Sales (net)	1.93	+

B. Liquidity: The ability to meet short term financial obligations.

(b1+b2)_5	"quick Ratio":(cash+Receivable) / Curr. Liabilities	2.45	+
b4_5	"Current Ratio": Curr. assets / Curr. Liabilities	2.22	+

C. Capital structure: Share of nonequity capital in firms assets

b9_216	Debt (long term) / Stockholder's Equity	0.67	-
D. Debt service: Measure of firm's ability to meet debt service obligation			
b13_15	Operating Income / Interest Expense	39.44	+
b1_15	Cash / Interest Expense	61.64	+

E Profitability: Ability to generate revenues in excess of expenses

b172_12	Net Income (loss) / Sales (net)	0.25	+
b172_216	Net Income (loss) / Stockholder's Equity	0.10	+

F. Tumover: Measures the efficiency of asset utilization

b2_12	Receivables / Sales (net)	0.15	+
G. Retum on equity: Measures the efficiency of asset utilization			
b172_60	Net Income (loss) / Common Equity	0.10	+

Table (4): Description of the qualitative variables

Variable	Definition	Mean	ES
NYSE	(1) if the firm's stock trades on the New York stock Exchange	0.61	$?$
AMEX	(1) if the stock trades on the American stock Exchange	0.31	$?$
FYRD	(1) if firm's close of fiscal year is December	0.64	$?$
FIFO	(1) if primary inventory valuation method is FIFO	0.28	$?$
LIFO	(1) if primary inventory valuation method is LIFO	0.19	$?$
AUDIT	(1) if audited (qualifed or unqualified opinion)	0.82	+
FORTUNE	(1) if excluded from Fortune ranking	0.72	$-?$
BONDA	(1) if firm's bonds are rated A or higher by the S \& P	0.15	+
BONDB	(1) if firm's bonds are rated in the B range	0.17	$?$
STOCKA	(1) if firm's stock is rated A or higher by the S \& P	0.24	+
STOCKB	(1) if firm's stock is rated in the B range	0.34	$?$
PAPERA	(1) if firm's commercial papers are rated A and higher	0.17	+
C283D	(1) if firm's commercial papers are not rated	0.82	-

ES= Expected Sign of Coefficient
listing or trading on each exchange (see Mayer [75]). Approximately 9% of our sample atocks are traded outside these exchanges and these will be the reference group.

The variables LIFO and FIFO are created to study whether accounting valuation methods are value-relevant as is suggested in Hand [35]. These variables take on the value 1 if all or the largest portion of the firm's inventories are valued by these methods. Approximately 52% of the sample use other valuation methods. They are the reference group for this variable.

The AUDIT variable is intended to capture the degree to which the firm's financial statements can be trusted. This variable may also serves as an indicator of the credibility of the firms financial officers. The Audit variable equals 1 if the firm has been audited by an outside accounting firm and has received a qualified or an unqualified opinion. The reference group, which is about 18% of the sample, does not fall in this category.

The next seven variables measure the impact of the market's assessment of a firm's operations. These include whether a firm has been ranked by FORTUNE, and the Standard and Poor's ranking of the stock, bond and commercial papers issued by the firm.

Descriptive statistics on all variables are generated and examined for their consistency. The means for all variables are reported in the tables. All statistical procedures were performed using the $S A S$ and $S H A Z A M$ statistical packages.

5.3 Estimation and Results

To estimate the price decomposition equation (5.3) consistently, two related issues regarding the distribution of ε_{i} and the functional form of (5.1) must be considered. Considering the former, it seems likely that the residual may be heteroscedastic and correlated across firms, i.e., the residual variance and the covariance may vary say with firm size. It is also possible that prices are related to attributes nonlinearly. The two issues are related, since heteroscedasticity may be due to an incorrect functional form or omitted explanatory variables.

Nonlinearity is a common feature of many asset pricing models, as for example in the Litzenberger and Ronn [72] framework or most of the models reviewed in chapter 4. ${ }^{36}$ As McDonald [76] has shown, even linear pricing models such as CAPM may be better fitted by nonlinear functions. Nonlinearity in asset pricing models, as is shown in McDonald and Lee [77], may be due to nonnormality and heteroscedasticity of the residuals. ${ }^{37}$

The consequences of heteroscedasticity for the least squares estimator are well known; these are a loss in efficiency, and biased estimates of the parameter variance-covariance matrix. This implies that the confidence intervals and tests of hypothesis will be biased and cannot be trusted. Furthermore, in the presence of heteroscedasticity, the least square estimator is no longer the maximum likelihood estimator, even if the residuals are normally distributed,

[^28]see Judge et al [45].
A typical remedy for correcting for heteroscedasticity is to transform the explanatory variables in a way that might be appropriate in the given context, e.g. changing nominal values to real or converting aggregate values to per capita. For the continuous variables considered here this transformation has already been done by creating variables on per share basis.

Although, this transformation does not necessarily remove heteroscedasticity, our null hypothesis, which will serve as a 'straw man' to be knocked down, is that the residuals are independent and identically distributed normal. Given the linear attribute production technology in 5.1, it is assumed that the price decomposition equation is linear in the attributes. The validity of these conjecture are then tested.

The estimation and testing steps taken are as follows. The four available prices, the annual high, low, close of fiscal year, and the close of calendar year prices, are regressed on explanatory variables, with and without the accounting ratios (8 regressions). The aim is to distinguish between the 'raw' and the created ratios. The latter are widely used by the analysts and regularly reported in financial journals and media. The result of these regression are collected in tables 1 to 8 in Appendix B.

To reduce collinearity and for the sake of parsimony highly insignificant variables (p-values greater than 0.15) were dropped and the relation was re-estimated with the remaining variables (proce-
dure STEPWISE of SAS). A more important purpose of this step was to see which attributes would be selected based on purely statistical measures of the fit. Tables 9 to 16 in Appendix B report on the results of these regressions.

This procedure indicates two startling results. First, the significant explanatory variables selected by the above criterion are easentially the same for all price regressions (compare tables 9 through 16 in Appendix B). Second, the reduction in the explanatory power of each regression as measured by the fall in the R^{2} is quite small, usually less than 0.01 , despite a large drop in the number of explanatory variables (compare tables 1 and 9, 2 and 10, etc. in Appendix B).

After removing the insignificant variables, each price regression is subjected to seven different tests of heteroscedasticity and two tests for normality of the residuals. These tests include the Lagrange Multiplier, the Chow, the Goldfeld-Quandt, the recursive residual test, and others. They are performed using the DIAGNOS option of SHAZAM version 6.1 [113]. ${ }^{38}$ Surprisingly, in no instance was the null hypothesis of homoscedastic and normal residuals rejected.

Using the Box-Cox procedure of the same econometric package, the hypothesis that the pricing functions were linear in the attributes was also tested. The results of this test were less conclusive. For the majority of cases linearity seemed appropriate when the independent and all explanatory variables receive the same power

[^29]transformation (λ).
A priori there are no reasons to believe such restrictions. Further functional analysis, perhaps using non-parametric methods, are required so as to address the linearity hypothesis satisfactorily. This is particularly true since for the Box-Cox test, attributes with negative values must be excluded from the analysis.

Baron-Adesi and Talwar [7] show that asset pricing equations with a larger number of explanatory variables, e.g., the quadratic parameter model of Kraus and Litzenberger, are more likely to be homoscedastic. They also indicate that heteroscedasticity may depend upon the type of securities considered as well as the functional misspecifications of the pricing equation. Our findings are generally in agreement with their conclusions. The preliminary test discussed above suggest that the attribute model may reduce misspecification error.

To place these findings in greater perspective we focus the discussion to the relation between stock prices on the close of the calendar year (PCY24) and the stock attributes. This relation could be viewed with a higher degree of confidence because all firms' financial information have been made public by this date.

Table 5 contains the estimated parameters of this regression with and without the financial ratios. The sign and magnitude of most coefficients seem to confirm the expected influence of the attributes on asset prices. The R^{2} for both regressions are unexpectedly high. The inclusion of the accounting ratios improves

Table (5): Regression Results for Price at the Close of Fiscal Year (PCY24)

	Reg.R-Squard	W-Ratio	778	W/O-Ratio	. 770
Variable	Definition	Parameter	P-Val	Parameter	P-Val
Const	Implicit Price Stcks	6.52	0.0001	6.00	0.0001
b2	Receivables-total	0.25	0.0001	0.19	0.0001
b3	Inventories-total	-0.19	0.0001	-0.23	0.0001
b5	Current Liabilidies-total	-0.04	0.0001	-0.03	0.0001
b8	PPE-total(net)	-0.14	0.0001	-0.10	0.0001
b9	Long-term debt-total	-0.06	0.0100	-0.06	0.0041
b12	Total sales	-	-	0.07	0.0005
b13	Operating income	0.37	0.0011	0.43	0.0001
b14	Depreciation	0.76	0.0074	-	-
b15	Interest Expense	0.95	0.0001	1.00	0.0001
bl6	Income laxes	4.56	0.0001	4.26	0.0001
b18	Income before ext.	-2.03	0.0001	-1.92	0.0001
b25	Number of commons	0.02	0.0001	0.03	0.0001
b26	Dividends per share	3.00	0.0001	2.77	0.0001
b28	Common shares traded	1.36	0.0012	1.12	0.0041
b29	Employees	-0.04	0.0045	-0.05	0.0010
b30	PPE-Capital expen	0.26	0.0291	0.23	0.0529
b36	Retained Eamings	0.34	0.0001	0.31	0.0001
b41	Cost of good sold	-	-	-0.06	0.0021
b42	Labor expenses	-0.18	0.0001	-0.16	0.0001
b45	Adverrising expense	0.63	0.0008	0.48	0.0116
b46	Research and devel	1.03	0.0001	1.07	0.0001
b51	Investment tax cred	7.56	0.0301	9.61	0.0055
b58	- Eamings per share	1.34	0.0001	1.41	0.0001
b100	common sharehldrs(*)	-0.03	0.0011	-0.03	0.0012
bl10	Total funds oper	0.52	0.0001	0.51	0.0001
b113	Increase in invest	-0.07	0.0001	-0.07	0.0001
b114	LT debt reduc	-0.11	0.0106	-0.09	0.0342
b128	Capital expen	-0.70	0.0001	-0.47	0.0020
b172	Net income	-0.51	0.0075	-0.50	0.0081
b181	Total liabi	-0.03	0.0001	-0.03	0.0001
b235	Com equi liqu. val	0.29	0.0001	0.35	0.0001
b249	Acquis-sales cont	-0.06	0.0024	-0.06	0.0038
AMEX	Amer. Stck Exchange	-1.53	0.0042	-1.72	0.0006
LIFO	Accounting Method	-	-	-1.19	0.0339
FORTUNE	FORTUNE Ranking	-2.05	0.0009	-2.00	0.0010
BONDA	Bond Ranking	1.34	0.0711	1.96	0.0054
BONDB	Bond Ranking	-1.09	0.0759	-	-
STOCKA	Stock Ranking	3.58	0.0001	2.62	0.0001
STOCKB	Stock Ranking	-	-	-1.22	0.0183
B16 6	Com Size (cash/asst)	5.27	0.0063	.	-
$\mathrm{B2}^{-6}$	Com Size (Receiv/asst)	-6.50	0.0026	-	-
B3-6	Com Size (Inventory/asst)	-5.00	0.0029	-	-
B9-6	Com Size (Debt-LT/asst)	2.69	0.0951	-	-
B36̆_6	Com Size (Ret Eam/asst)	-1.83	0.0412	-	-
B16-172	ComSize(Inc.Tax/Nelinc)	-0.10	0.0054	-	-
B9 $\mathrm{Z}^{1} 16$	Cap Struc(Debt-LT/StckhldrEqui)	-0.10	0.1149	-	-

All variables with P-value $>, 15$ have been removed from the regression. ParameterwDollars
these regressions considerably. Furthermore, no significant change of magnitudes or sign reversal occur when these ratios are added.

What do these regressions suggest? Briefly, the intercept provides an estimate of the shadow cost associated with holding stocks rather than other financial assets. All else remaining equal, investors appear willing to pay about $\$ 6.52$ for the uniques attribute of the average stock.

There are at least two way to interpret this result. First, since the average year end stock price is $\$ 18.14$, it appears that the average value of the unique attribute of stocks is nearly a third of the average price. This may be high in relation to other assets and a comparison may be quite informative.

Second, the $\$ 6.52$ estimate seems comparable with the price of stocks when they are first offered to the public through initial public offerings (IPO). ${ }^{39}$ This comparison is interesting since the average purchaser of such stock may be initially unaware of other attributes of these assets and hence offering a price reflective of their unique values. Both these interpretations deserve further theoretical and empirical scrutiny.

Turning to the common attributes, i.e., the accounting information, items from the firm's balance sheet and income statement generally dominate the analysis. These items measure both current and changes in various accounting numbers. Most significant variables, statistically and in magnitude, are those that are related to

[^30]the firms potentials for sustained future earning. Most important among these is the firms retained earnings, which is often devoted to investments in plant and equipments.

Is the timing of the release of financial statements important ? The close of fiscal year for 64% of the sampled firms is in December. For these firms it is likely that the effect of financial statement variables on December 31 prices is more pronounced since the information is more recent. A binary variable designed to capture such effect (FYRD) was found to be statistically insignificant. ${ }^{40}$

Although the majority of accounting numbers have the correct aign, there are some surprises as well. For example with the inclusion of accounting ratios, the firm's accounting methods are no longer significant. Also a number of items from the Flow of Funds Statement (b113, 114, 128, and 172) appear to have the wrong sign. Finally, the ex-date dividend per share (b 26) appears to contribute more to price determination than does the current dividend per share of common stock (b21). In fact this latter variable is found to be statistically insignificant.

Turning to variables that are of general interest in finance, management science, and economics, our results both confirms and rejects previous findings in these areas. For example tax measures are found to affect prices positively (b16 or b51). The size of a firm as measured by its number of employees or its labor costs (b29, b42)

[^31]has a negative sign, while size as measured by assets (e.g., B1_6) is positive. Interestingly size as measured by sales (b12 or b41) does not enter the regressions.

Debt structure of the firms, as proxied by different variables, is significant and has the correct sign (b5, b9, b181,b9_216). The results for measures of the firm's potential for growth are somewhat mixed (b30, b46,b113, b128, b249), though generally positive. Advertising and Research and Development are clearly value-relevant with a positive influence (b $45, \mathrm{~b} 46$) as has been found by others (see Berger [12]).

All else being equal, there is a negative premium of $\$ 1.53$ associated with stocks traded on the AMEX. This seems to confirm the prestige story associated with the NYSE noted earlier. Outside ranking of firms operations are important determinant of prices. The coefficient of stock and bond ratings conform with expectations but the ranking of firms commercial paper is insignificant. Lastly, comparing two otherwise identical firms, the stock for the firm with a Fortune Magazine's ranking will be priced at least $\$ 2.05$ higher !

Suppose we accept the validity of these regression models in terms of the appropriateness of the included variables and ask what is the contribution of each variable to their explanatory power, i.e., change in R^{2}. Table 6 provides a ranking for the explanatory variables in regressions in table 5 . The same information for other regressions may be found in tables (9) to (16) of Appendix (B).

The first ten variables that enter all models are essentially

Table (6): Explanatory Impact of the Exogenous Variables on the R-Squard

Variable	Change In R-Squ	Prob>F	varlable	Change in R-Squ	Prob $>$ F
-	PCP24 with katios and		PCY24 without ${ }^{\text {atios }}$		
636	0.5251	0.0000	636	0.5154	0.0000
b16	0.1140	0.0001	616	0.1202	0.0001
b26	0.0259	0.0001	b26	0.0251	0.0001
bl13	0.0172	0.0001	b113	0.0167	0.0001
b235	0.0130	0.0001	$b 235$	0.0143	0.0001
STOCKA	0.0128	0.0001	STOCKA	0.0136	0.0001
b18	0.0088	0.0001	618	0.0086	0.0001
63.6	0.0073	0.0001	6123	0.0064	0.0001
b123	0.0061	0.0001	FORTUNE	0.0055	0.0001
FORTUNE	0.0053	0.0001	b3	0.0064	0.0001
b8	0.0033	0.0001	b15	0.0039	0.0001
628	0.0026	0.0001	b46	0.0025	0.0001
63	0.0025	0.0001	b42	0.0027	0.0001
b5	0.0017	0.0003	b5	0.0025	0.0001
b1t0	0.0033	0.0001	b110	0.0024	0.0001
b4	0.0020	0.0001	b2	0.0024	0.0001
b13	0.0022	0.0001	AMEX	0.0021	0.0001
b15	0.0019	0.0001	b128	0.0017	0.0002
b181	0.0025	0.0001	b181	0.0017	0.0002
b58	0.0018	0.0002	628	0.0013	0.0008
b42	0.0016	0.0004	BONDA	0.0013	0.0008
146	0.0017	0.0002	b45	0.0009	0.0049
b25	0.0013	0.0011	LIPO	0.0009	0.0064
629	0.0011	0.0031	b25	0.0007	0.0151
b45	0.0010	0.0033	629	0.0017	0.0001
69	0.0010	0.0032	b100	0.0014	0.0005
\$100	0.0009	0.0048	651	0.0008	0.0083
b128	0.0009	0.0059	b8	0.0006	0.0204
BONDA	0.0009	0.0066	b13	0.0013	0.0006
b16 172	0.0008	0.0077	69	0.0009	0.0046
b2	0.0007	0.0164	658	0.0007	0.0143
$b 26$	0.0013	0.0009	6172	0.0007	0.0165
651	0.0007	0.0173	STOCK ${ }^{\text {B }}$	0.0006	0.0228
6172	0.0007	0.0180	b114	0.0005	0.0403
AMEX	0.0006	0.0294	6249	0.0004	0.0754
b36 6	0.0007	0.0167	630	0.0005	0.0292
bil4	0.0006	0.0219	612	0.0003	0.1139
b249	0.0005	0.0395	641	0.0011	0.0021
bi4	0.0005	0.0324			
b1 6	0.0005	0.0375			
b30	0.0004	0.0495			
BONDB	0.0003	0.1007			
b9 6	0.0003	0.1157			
69216	0.0003	0.1149			

the same and appear in the same order. The first two variables, retained earnings (b36) and income taxes (b16) per share, are clear surprises here. It is likely that these variables proxy for the firms earnings and therefore have significant explanatory power. The remainder of variables; dividends per share (b26), increase in investments (b113), book value of the firm (b235), the firm's stock ranking, and others, seem consistent with a priori expectations and the result of previous studies discussed in Capon, Farley, and Hoenig [19].

To conclude this chapter we emphasize that these findings are preliminary and must be subjected to further scrutiny. Three types of refinements and extensions are planned. First, the attributes integrated into the analysis will be expanded by utilizing the CRSP data files. It is likely that in the presence of summary variables, such as a firm's β, some of the present variables will become less important.

Second, a series of diagnostic tests for multicollinearity, misspecification error, and functional form should be undertaken. ${ }^{41}$ The model should be also tested using returns rather than prices. Finally, to assess the stability and the overall validity of the model, out of sample forecasts should be generated using data from previous periods. Alternatively, based on the above shadow prices of attributes, mispriced securities (those with non-zero residuals) should be identified and the return to these assets be followed to see if portfolio decision based on the attributes would have been profitable in

[^32]the subsequent periods.

6 Summary and Conclusions

This study developed a model of investor behavior in which assets' attributes influence individual choice. The framework proposed is sufficiently general to nest a variety of existing models as its special case. The attribute model provides a useful tool for addressing a variety of positive and normative questions regarding investor behavior and asset prices.

An important implication of the attribute model is that in equilibrium, assets' prices will depend upon their qualitative attributes. Price and attribute data from a cross section of firms generally confirmed this hypothesis. The findings of the dissertation also confirmed those of other studies in the economic literature. However, unlike the previous studies which considered particular attributes (e.g. firm size) in isolation, this study considered the combined effect of a variety of attributes.

A number of findings in the dissertation will be of interest to researchers and practitioners in finance and accounting. For example our results suggest a pricing effect due to stock exchange, number of shares outstanding (b25), number of individuals holding the stock (b100), number of shares traded during the calendar year (b28) ${ }^{42}$ and a variety of outside opinions about firms operations. These influences may be ascribed to investors belief's and preferences. It is likely, however, that a variety of 'puzzles' which arise within the

[^33]confines of the standard asset pricing models, for example the mean reversion phenomenon, may be resolved once the influence of these factors are formally integrated in the analysis.

The empirical research in accounting has almost exclusively focused on earnings (or earnings related variables) as the sole value relevant financial attribute. In assessing this voluminous literature Lev $[64,63]$ concludes that the level or changes in earnings alone play a minor role in explaining the raw or risk adjusted stock returns. He concludes that earnings have little relevance for security valuation.

The results here provide further evidence in support of Lev's conclusions and suggests that earning related variables particularly retained earnings per share (b36) should be closely scrutinized. Our findings also confirm the view among accounting researchers that the inability of earnings to predict prices (returns) may be due misspecification error as well as the exclusion of non-earning information available to the market [87].

Finally, the results of this study are similar to those of Ou and Penman [84], who indicate that non-earning financial information is strongly value-relevant. They, however, utilize aggregate measures which combine a large set of attributes into a single predictor. The present dissertation complements the Ou and Penman study by providing information regarding the influence of specific accounting attributes.

References

[1] E. Amir. Assessing alternative accounting methods for post retirement benefits other than pensions. U.C. Berkeley, Haas School, 1991.
[2] Arrow. The role of securities in the optimal allocation of risk bearing. The theory of risk bearing, 1964.
[3] K. Arrow. Essays in the theory of risk bearing. Markham, Chicago, 1971.
[4] L. Bagwell. Sareholder heterogeneity: Evidence and implications. $A E R, 81$ (2):218-222, 1991.
[5] R. Ball and P. Brown. An empirical evaluation of accounting income numbers. Jour. of Accounting Research, pages $159-$ 178, 1968.
[6] R. Ball, S. Kothari, and R. Watts. The economic of the relation between earnings changes and stock returns. Univ. of Rochester, Mimo, 1988.
[7] G. Barone-Adesi and P. Talwar. Market models and heteroscedasticity of residual security returns. Jour. of Bus. Econ. Stat., 1:163-168, 1983.
[8] V. Bawa. Optimal rules for ordering uncertain prospects. Jour. Fin. Econ., 2:95-121, 1975.
[9] W. Beaver, R. Lambert, and D. Morse. The information content of security prices. Journal of Accounting and Economics, 2:3-28, 1980.
[10] G. S. Becker. A theory of the allocation of time. The Economic Journal, Sept. 1965.
[11] M. Belongia and J. Chalfant. The changing empirical definition of money: some estimates from a model of the demand for money substitutes. Jour. Political Econ., pages 387-97, April 89.
[12] P. Berger. Explicit and implicit tax effects of the r \& d tax credit. Mimo, Univ. of Chicago, GSB, 1991.
[13] F. Black and M. Scholes. The pricing of options and corporate liabilities. JPE, 81(3), 1973.
[14] G. Boyle. Commodity price uncertainty and optimal asset choice. Jour. Econ. and Bus., 42:133-140, 1990.
[15] D. Breeden. An intertemporal asset pricing model with stochastic consumption and investment opportunities. JPE, $7(3), 1979$.
[16] M. Brennan. Capital market equilibrium with divergent borrowing and lending rates. JFQA, 6:1197-1205, 1971.
[17] M. Brennan and P. Hughes. Stock prices and the supply of information. Mimo, Univ. of Southern California, 1990.
[18] M. Browning. A simple nonadditive preference structure for models of household behavior over time. JPE, 99(3):605-637, 1991.
[19] N. Capon, J. Farley, and S. Hoenig. Determinants of financial performance: A meta-analysis. Management Science, 36:11431159, 1990.
[20] D. Cass and J. Stiglitz. Risk aversion and wealth effects in portfolios with many assets. Rev. Econ. studies, 39:331-351, 1972.
[21] S. Das and B. Lev. The returns eearnings relation is nonlinear, discontinuous, and asymmetric. U.C. Berkeley, Haas School, 1990.
[22] G. Debreu. Theory of Value. Wiley \& Son., N.Y., 1959.
[23] G. Duncan. A matrix measure of multivariate local risk aversion. Econometrica, 45:167-190, 1977.
[24] L. Epstein. A disaggregated analysis of consumer choice under uncertainty. Econometrica, 43:877-92, 1975.
[25] E. Fama. Foundations of Finance. Basic Books, NY, 1976.
[26] C. Finger. Earnings as a predictor of future cash flows. U.C. Berkeley, Haas, 1990.
[27] I. Finkelshtain and J. Chalfant. Marketed surplus under risk: Do farmers agree with sandmo. Amer. Jour. Agri. Econ., 1991.
[28] I. Finkelshtain and J. Chalfant. Portfolio choices in the presence of other risks. Management Science, page forthcoming, 1992.
[29] P. Fishburn. Independence in utility theory with whole product sets. Operations Res., 13:28-45, 1965.
[30] P. Fishburn. The foundations of expected utility. Dordrecht: D. Reidel Pub. Co., 1982.
[31] G. Foster. Financial Statement Analysis. Prentice Hall Pub., 1988.
[32] C. Green and E. Kiernan. Multicollinearity and measurement error in econometric financial modelling. Manchester School, LVII(4):357-369, 1989.
[33] J. Hadar and W. Russell. Rules for ordering uncertain prospects. $A E R, 59: 25-34,1969$.
[34] J. Hadar and W. Russell. Stochastic dominance and diversification. JET, 3:288-305, 1971.
[35] J. Hand. A theoretical and empirical re-examination of 197475 LIFO adoptions and non-adoptions. Univ. of Chicago, GSB, 1991.
[36] M. Hanemann. Quality and demand analysis. In: New direction in econometric model of U.S. Agriculture, Gordon Rausser, Ed., 1980.
[37] M. Harris and A. Raviv. The design of securities. Univ. of VChicago, GSB, Mimo, 1988.
[38] H. Houthakker. Compensated changes in quantities and qualities consumed. Rev. Econ.Stud., 19:155-164, 1951.
[39] C. Huang, D. Kira, and I. Vertinsky. Stochastic dominance rules for multi-attribute utility functions. Management Science, Rev. Econ. Studies:611-15, 1978.
[40] C. Huang, I. Vertinsky, and T. Ziemba. On multiperiod stochastic dominance. Jour. Fin. Quant. Analysis, 13, 1978.
[41] J. Ingersoll. Multidimensional security pricing. JFQA, 10:78598, 1975.
[42] J. Ingersoll. Theory of financial decision making. Rowmand and Littlefield Pub., 1987.
[43] C. Jacklin and E. Robbins. Going public. Mimo, Stanford Univ., 1989.
[44] Robert Jarrow. Finance Theory. Prentice Hall, 1988.
[45] G. Judge and etal. Introduction to theory and practice of Econometrics. McGraw Hill publishing Company, 1985.
[46] E. Karni. On multivariate risk aversion. Econometric, 47:1391-1401, 1979.
[47] R. Keeney. Quasi-separable utility functions. Naval Research Logistics Quarterly, 15:551-565, 1968.
[48] R. Keeney. Utility independene and preferences for multiattributed consequences. Operations Res., 19:875-893, 1971.
[49] R. Keeney. Utility functions for multiattributed consequences. Management Science, 18:276-287, 1972.
[50] R. Keeney. Risk independence and multiattributed utility functions. Econometrica, 41:27-34, 1973.
[51] R. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences and value trade-offs. John Wiley and Sons, New York, 1976.
[52] D. Keim. Trading patterns, bid-ask spreads and estimated security returns: the case of common stocks at calendar turning points. Univ. of Pennsylvania, Mimo, 1989.
[53] R. Kihlstrom and L. Mirman. Risk aversion with many commodities. JET, 8, 1974.
[54] R. Korajczyk, D. Lucas, and R. McDonald. The effect of information releases on the pricing and timing of equity issues: theory and evidence. Northwestern Univ., Mimo:\# 59, 1988.
[55] A. Kraus and R. Litzenberger. Skewness preferences and the valuation of risky assets. Jour. Finance, 31:1085-1100, 1976.
[56] D. Kreps. Notes on the theory of choice. Westview Publisher, 1988.
[57] G. Ladd and V. Suvenant. A model of demand for consumer goods characteristics. Amer. Jour. of Agri. Econ., 58, 1976.
[58] J. LaFrance. The economics of nutrient content and consumer demand for food. Ph.D. Dissertation, Dep. of Agri. and Res. Econ.:U.C. Berkely, 1983.
[59] K. Lancaster. A new approach to consumer theory. JPE, 74:132-157, 1966.
[60] K. Lancaster. Consumer demand: A new approach. Columbia Univ. Prss, 1971.
[61] B. Lehmann and D. Modest. The empirical foundations of the arbitrage pricing theory. Jour. Fin. Econ., 21, 1988.
[62] B. Lehmann and D. Modest. Asset pricing benchmarks and stock market anamolies: a reexamination. U.C. Berkeley and Coumbia Univ., Mimo, 1989.
[63] B. Lev. On the usefullness of earnings and earnings research. Jour. Accounting Research, 1989.
[64] B. Lev and S. Thiagarajan. Fianacial statement analysis. Working paper,, U.C. Berkeley, 1990.
[65] D. Levhari, J. Paroush, and B. Peleg. Efficiency analysis for multivariate distributions. Rev. Econ. Studies, 42:87-91, 1975.
[66] H. Levy. Multiperiod consumption decisions under conditions of uncertainty. Management Science, 22:1258-67, 1976.
[67] H. Levy and J. Paroush. Multiperiod stochastic dominance. Management Science, 21:428-35, 1974.
[68] H. Levy and J. Paroush. Toward multivariate efficiency criteria. JET, 7:129-42, 1974.
[69] Y. Li and W. Ziemba. Characterization of optimal portfolios by univariate and multivariate risk aversion. Management Science, 35:259-69, 1989.
[70] R. Litzenberger and K. Ramaswamy. The effect of personal taxes and dividends on capital asset prices. 1970.
[71] R. Litzenberger and K. Ramaswamy. The effects of dividends on common stock prices tax effects or information effects. Jour. Fin., XXXVII(2), 1982.
[72] R. Litzenberger and E. Ronn. A utility based model of common stock price movements. Jour. Fin., XLI(1):67-92, 1986.
[73] M. Machina. Choice under uncertainty: Problems solved and unsolved. Jour. of Econ. Perspectives, 1, 1987.
[74] H. Markowitz. Portfolio selection: efficient diversification of investment. Yale Univ. Press(1959), 1952.
[75] M. Mayer and G. Heege. What NASDAQ costs the shareholders. research Department,, American Stock Exchange, 1990.
[76] B. McDonald. Functional forms and the capital asset pricing model. JFQA, 18(3):318-329, 1983.
[77] B. McDonald and C. Lee. An analysis of nonlinearities, heteroscedasticity, and functional form in the marke data. Jour. Bus. Econ. Stat., 6(4):505-509, 1988.
[78] R. Merton. An intertemporal CAPM. Econometrica, 41(5), 1973.
[79] M. Miller and F. Modigliani. Dividend policy, growth, and the valuation of shares. Jour. Bus., 4, 1961.
[80] R. Muth. Household production and consumer demand functions. Econometrica, 34, 1966.
[81] D. Nelson. Conditional heteroskedasticity in asset returns: a new approach. Econometrica, 59(2):347-370, 1991.
[82] J. Ohlson. Accounting earnings, book value, and dividends: The theory of clean surplus equation (part i). Columbia Univ., 1988.
[83] J. Ohlson. The theory of value and earnings, and an introduction to the ll-brown analysis. Columbia Univ., Working paper, 1989.
[84] J. Ou and S. Penman. Financial statement analysis and the prediction of atock returns. Jour. of Accounting and Economics, 11:295-329, 1989.
[85] R. Pollak. Additive von neumann-morganstern utility functions. Econometrica, 35:485-494, 1967.
[86] J. Pratt. Risk aversion in the small and the large. Econometrica, 32:122-36, 1964.
[87] R. Ramakrishnan and J. Thomas. More on the accounting earnings/stock price link. Mimo, Columbia Univ., 1990.
[88] V. Rao, V. Mahajan, and N. Varaiya. A balance model for evaluating firms for acquisition. Management Sci., 37(3):331349, 1991.
[89] S. Richard. Multivariate risk aversion, utility independence and separable utility functions. Management Science, 21:1221, 1975.
[90] R. Roll. A critique of the asset pricing theory's tests - part i. Jour. Fin. Econ., 4:129-176, 1977.
[91] S. A. Ross. Some stronger measures of risk aversion in the small and the large with applications. Econometrica, 49(3), 1981.
[92] M. Rothschild and J. Stiglitz. Increasing risk: I. a definition. JET, 2:225-243, 1970.
[93] M. Rothschild and J. Stiglitz. Increasing risk: II. its economic consequences. JET, 3:66-84, 1971.
[94] M. Rubinstein. A comparative static analysis of risk premiums. Jour. Business, 12:605-615, 1973.
[95] M. Rubinstein. The fundemental theorem of parameterpreference security valuation. JFQA, pages 61-69, 1973.
[96] M. Rubinstein. Securities market efficiency in an arrow-debreu economy. AER, 65(5), 1975.
[97] M. Rubinstien. An aggregation theorem for securities markets. Jour. Fin. Econ., 1:225-244, 1974.
[98] W. Russell and T. Seo. Ordering uncertain prospects: The multivariate utility functions case. Management Science, Rev. Econ. Studies:605-610, 1978.
[99] K. Rydquist. Empirical investigation of the voting premium. Working paper \# 95, Northwestern Univ., 1988.
[100] P. J. Schoemaker. The expected utility model: Its variants, purposes, evidence, and limitations. Jour. of Econ. Literature, 20:529-63, 1982.
[101] L. Scoffer. Financial statement indicators of takeover targets: A multinomial analysis. U.C. Berkeley, Haas School, Mimo, 1991.
[102] J. Shanken. Multivariate tests of the zero-beta CAPM. Jour. Fin. Econ., 14, 1985.
[103] W. Sharpe. Capital asset prices: a theory of market equilibrium under conditions of risk. Jour. Fin., XIX:(3), 1964.
[104] P. Shroff. Association of earnings and earnings changes with stock returns: alink with the traditional approach. Columbia Univ., 1991.
[105] R. Sloan. An empirical examination of the role of accounting earnings in top executive compensation contracts. Univ. of Rochester, Mimo, 1991.
[106] P. Slovic and S. Lichtenstein. Facts versus fears: understanding perceived risk. volume Judgement under uncertainty:
heuristics and biases. Kahneman, Slovic, and Tversky, Ed., 1982.
[107] J. Stiglite. Behavior towards risk with many commodities. Econometrica, 37:660-667, 1969.
[108] G. Tauchen and R. Hussey. Quadratic-based methods for obtaining approximate solutions to nonlinear asset pricing models. Econometrica, 59(2):371-396, 1991.
[109] Henry Theil. Qualities, prices and budget inquiries. Rev. of Econ. Stud., 19:129-147, 1952.
[110] J. Tobin. Liquidity preference as behavior towards risk. Rev. Econ. Stud., 25:65-86, 1958.
[111] W. Viscusi. Do smokers underestimate risk? JPE, 98:12531269, 1990.
[112] J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton Úniversity Press, 1947.
[113] K. White. SHAZAM: Econometric Computer Program. McGraw-Hill Book Company, 1988.

7 Appendix A

The following lemma establishes the quasi-concavity of $u^{*}($.$) .$
Lemma 1 If the set $Z(X, \beta)=\left\{Z \in R^{m}: G(X, Z, \beta) \leq\right.$ $0\}$ is nonempty, the induced utility function, $u^{*}: R^{n} \times R^{n} \rightarrow R$, defined by $u^{*}(X, \beta)=$ maximum $[u(Z): Z \in Z(X, \beta)]$ is quasiconcave in \mathbf{X}.

Proof of lemma 1: Consider two portfolios, X and X^{\prime} such that for a given β and any real constant $k, u^{*}(X, \beta)=k$ and $u^{\prime *}\left(X^{\prime}, \beta\right) \geq k$. Let $X^{\prime \prime}=t X+(1-t) X^{\prime}$ for a $t \in$ $[0,1]$. Corresponding to X, X^{\prime} and $X^{\prime \prime}$ define Z, Z^{\prime} and $Z^{\prime \prime}$ such that $G(X, Z, \beta) \leq 0, G\left(X^{\prime}, Z^{\prime}, \beta\right) \leq 0$, and $G\left(X^{\prime \prime}, Z^{\prime \prime}, \beta\right) \leq 0$ with $u(Z)=u^{*}(X, \beta), u\left(Z^{\prime}\right)=u^{*}\left(X^{\prime}, \beta\right)$, and $u\left(Z^{\prime \prime}\right)=u^{*}\left(X^{\prime \prime}, \beta\right)$. Now the convexity of production possibility set, $Y(\beta)$ implies that $G\left[t Z+(1-t) Z^{\prime}, X^{\prime}, \beta\right] \leq 0$, while the quasi-concavity of $u($. implies that $u[t Z+(1-t) Z] \geq u(Z)$. Hence it follows that $u^{\prime}\left(X^{\prime \prime}, \beta\right)=u\left(Z^{\prime \prime}\right) \geq u\left[t Z+(1-t) Z^{\prime}\right] \geq u(Z)=k$, which is the definition of quasi-concavity. QED

8 Appendix (B)

- Table (1): Regression results for PHI22 with all variables included
- Table (2): Regression results for PLO22 with all variables included
- Table (3): Regression results for PCY24 with all variables included
- Table (4): Regression results for PC199 with all variables included
- Table (5): Regression results for PHI22 without the accounting ratios
- Table (6): Regression results for PLO22 without the accounting ratios
- Table (7): Regression results for PCY24 without the accounting ratios
- Table (8): Regression results for PC199 without the accounting ratios
- Table (9): Final regression results for PHI22 without accounting ratios
- Table (10): Final regression results for PLO22 without accounting ratios
- Table (11): Final regression results for PLO22 without accounting ratios
- Table (12): Final regression results for PCY24 without accounting ratios
- Table (13): Final regression results for PCY24 without accounting ratios
- Table (14): Final regression results for PCY24 without accounting ratios
- Table (15): Final regression results for PC199 without accounting ratios
- Table (16): Final regression results for PC199 without accounting ratios

Table (1): Regression results for PHI22 with all variables

included

Depencient Variable pHI22
R-square $=0.77425210$

	$D F$	Sum of Squares	Mean Square	E	Prob>e
Regression	94	980028.52412176	10425.83536300	68.89	0.0000
Error	1888	285745.92912997	151.34847941		
Total	1982	1265774.4532517			
	Paramator	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>e
INTERCEP	16.87066158	18.74662546	122.57335794	0.81	0.3683
NYSE	1.90930244	1.34906924	303.15102166	2.00	0.1572
AMEX	-0.16923387	1.47787626	1.98461612	0.01	0.9088
EYRD	-0.39814932	0.65843340	55.34091256	0.37	0.5455
b1	-0.00384130	0.03013060	2.45990557	0.02	0.8986
b2	0.26493470	0.08678771	1410.39021946	9.32	0.0023
b3	-0.18539002	0.04509618	2557.82787415	16.90	0.0001
b4	0.14292811	0.05912583	884.42067834	5.84	0.0157
b5	-0.03325491	0.01241334	1086.20674205	7.18	0.0074
b6	0.69054948	0.33474410	644.08294511	4.26	0.0393
b7	-0.09270068	0.05376600	449.91284098	2.97	0.0848
b8	-0.11317998	0.08863326	246.78789331	1.63	0.2018
b9	-0.01986478	0.03807134	41.20492708	0.27	0.6019
b12	0.11444635	0.03464745	1651.35112284	10.91	0.0010
b13	0.42722289	0.17942664	858.05128722	5.67	0.0174
b14	1.00882805	0.42794379	841.08309341	5.56	0.0185
b15	1.14864048	0.18686726	5718.47040867	37.78	0.0001
b16	5.16120367	0.47739533	17689.83280039	116.88	0.0001
b18	-2.48167356	0.33700598	8207.14585996	54.23	0.0001
b19	-0.15068659	1.40428962	1.74266486	0.01	0.9146
b21	1.19890007	1.15236210	163.81968926	1.08	0.2983
b26	3.67813501	0.87164498	2694.97117858	17.81	0.0001
b28	5.03871725	0.60967116	10337.76690335	68.30	0.0001
b29	-0.01357051	0.01869035	79.78765820	0.53	0.4679
b30	0.23639399	0.19746552	216.90441136	1.43	0.2314
b36	0.66050333	0.06758610	14454.84102907	95.51	0.0001
b41	-0.11932541	0.04063359	1305.18922307	8.62	0.0034
b42	-0.15428078	0.05351419	1257.95117572	8.31	0.0040
b43	-0.93488709	0.65846308	305.09389896	2.02	0.1558
b45	0.41641799	0.27428641	348.84173237	2.30	0.1291
b46	0.91465962	0.41790309	725.01318001	4.79	0.0287
b51	7.17396234	4.83464405	333.24775870	2.20	0.1380
b58	0.46536161	1.08967340	27.60364703	0.18	0.6694
FIFO	0.42163607	0.81020435	40.98872669	0.27	0.6028
LIFO	-1.36743928	0.95569169	309.85502441	2.05	0.1526
b60	-0.43152479	0.23415991	514.00159620	3.40	0.0655
b98	-0.03041953	0.01275430	860.93438843	5.69	0.0172
b100	-0.03074592	0.01145631	1090.09229840	7.20	0.0073
b107	0.03045219	0.35282591	1.12744227	0.01	0.9322
b108	0.25489369	0.18971726	273.20116287	1.81	0.1793
b109	0.04164936	0.05176071	97.99280526	0.65	0.4211

Table (1) Cont. : Regression results for PHI22

Variable
b110
b111
b112
b113
bl14
b115
bil6
b123
b127
b128
b129
AUDIT
b172
b181
b216
b235
b248
b249
b278
EORTUNE
BOADA BONDB STOCKA STOCKB b283D papera
b1_6
b2-6
b3_6
b4-6
b7-6
b8_6
b5_6
b9. 6
b181_6
b60_6
b36_6
b216_6
b235-6
b12 172
b13-172
b14 172
b15-172
b16-172
b41_172
b9_216
b5b9_216
b13_15
b1 $\overline{1} 5$
b172_12
b172-60
b172 216
b2_12

Paramoter
 Paramoter

 0.60113411 0.06485660 $-0.10506092$$-0.21826902$
-0.30974906
-0.19376349
0.18948097
1.30580693
-1.54313360
-0.84560928
2.85798001
-0.73357522
-0.73948548
-0.31789961
0.38231751
0.82053804
-0.11725750
-0.43798584
-3.04108334
2.02043944
-1.21417632
5.02546775
-0.55988230
-13.19526836
-12.24739415
7.10184628
-11. 20175532
-8.79861678
-0.70003659
-1.67991579
4.21657330
-3.25883848
-2.59488484
9.86120843
1.53520323
-2.48880350
-2.69288553
5.77890750
-0.00014200
0.05294724
-0.07303374
0.01120587
-0.20793831
-0.00076092
-0.22894754
0.02915222
0.00362149
-0.00244824
-0.06173874
-0.12306542
-0.09274002
0.32985132
standard Eriox
0.12546276
0.06682280
0.04942452
0.04967126
0.08243634
0.22831294
0.05579954
0.79491172
1.02313220
0.26350695
0.09892083
2.37105931
0.28676833
0.33300841
0.39874256
0.11275105
1.91904935
0.03174555
2.63454674
1.24771186
1.13527181
0.86487101
1.03073155
0.78207914
6.37588984
6.43888234
4.63551854
5.65143600
3.97278772
4.06633658
0.99289161
2.75686227
3.51853598
3.23619293
17.40740541
8.61200459
1.56953366
19.01474026
5.55445774
0.00636282
0.01999978
0.03687730
0.01863254
0.13007175
0.00821459
0.19253058
0.09171931
0.00164845
0.00107541
0.50931896
0.36327138
0.44715892
0.90461905

TYpe II Sum of Squares 3474.49060102 142.57295011 683.87316882 2922.48269831 2136.78411367 109.00864252 1745.21169768 408.41172166 344.28778297
1558.59536384 473.78978642 219.89309868 990.38711566 746.32324363 96.19951302 1740.14439920 27.66962156 2064.87491488 4.18298583 899.09607409 479.36909063 298.29013501 3597.82390082 77.56577456 648.23564206 547.57608598 355.24171061 594.61053315 742.36270747
4.48552107

$$
433.26081318
$$

$$
354.05214760
$$ 129.83139986 97.30730162 48.57024015 4.80951528 380.55550785 3.03551967 163.82727793 0.07538507

1060.75337069 593.61777439 54.74251246 386.79526255 1.29861548 214.01814254 15.28972715 730.46355178 784.39840658 2.22389332 17.36951811 6.51011496 20.12255150

F	$P x 0 b>E$
22.96	0.0001
0.94	0.3319
4.52	0.0337
19.31	0.0001
14.12	0.0002
0.72	0.3962
11.53	0.0007
2.70	0.1006
2.27	0.1317
10.30	0.0014
3.13	0.0770
1.45	0.2282
6.54	0.0106
4.93	0.0265
0.64	0.4254
11.50	0.0007
0.18	0.6690
13.64	0.0002
0.03	0.8680
5.94	0.0149
3.17	0.0753
1.97	0.1605
23.77	0.0001
0.51	0.4741
4.28	0.0386
3.62	0.0573
2.35	0.1257
3.93	0.0476
4.90	0.0269
0.03	0.8633
2.86	0.0908
2.34	0.1263
0.86	0.3545
0.64	0.4228
0.32	0.5711
0.03	0.8585
2.51	0.1130
0.02	0.8874
1.08	0.2983
0.00	0.9822
7.01	0.0082
3.92	0.0478
0.36	0.5476
2.56	0.1101
0.01	0.9262
1.41	0.2345
0.10	0.7506
4.83	0.0281
5.18	0.0229
0.01	0.9035
0.11	0.7348
0.04	0.8357
0.13	0.7154

Table (2): Regression results for PLO22 with all variables

included

Dependent Variable PLO23
R-square $=0.81127034$

	DF	Sum of Squares	Mean Square	F	rob >5
Regression	94	357245.03775005	3800.47912500	86.34	0.0000
Error	1888	83107.60645188	44.01885935		
Total	1982	440352.64420194			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTEACEP	9.59045500	10.11005374	39.61049597	0.90	0.3429
nyse	-0.42976613	0.72755294	15.35938974	0.35	0.5548
AMEX	-1.76805339	0.79701856	216.61706625	4.92	0.0267
F'YRD	-0.04032203	0.35509308	0.56759565	0.01	0.9096
b1	-0.00136240	0.01624943	0.30943474	0.01	0.9332
b2	0.11350438	0.04680461	258.87306070	5.88	0.0154
b3	-0.13894595	0.02432037	1436.78038062	32.64	0.0001
b4	0.07079316	0.03188655	216.97321341	4.93	0.0265
b5	-0.02338662	0.00669451	537.20012526	12.20	0.0005
b6	0.45336275	0.18052747	277.61560107	6.31	0.0121
b7	-0.04493134	0.02899600	105.69666378	2.40	0.1214
b8	-0.07744375	0.04779991	115.54664926	2.62	0.1054
b9	-0.02422502	0.02053187	61.27879294	1.39	0.2382
b12	0.05644943	0.01868537	401.74879605	9.13	0.0026
b13	0.26001866	0.09676477	317.84343271	7.22	0.0073
b14	0.77571677	0.23079005	497.29142515	11.30	0.0008
b15	0.67512337	0.10077750	1975.50405204	44.88	0.0001
b16	3.09805201	0.25745927	6373.81040601	144.80	0.0001
b18	-1.49456033	0.18174730	2976.66354859	67.62	0.0001
b19	-0.98877852	0.75733329	75.03480038	1.70	0.1918
b21	1.00052201	0.62146880	114.09153302	2.59	0.1076
b26	2.85994450	0.47007808	1629.34856299	37.01	0.0001
b28	-0.13524067	0.32879561	7.44734328	0.17	0.6809
b29	-0.01403929	0.01007970	85.39522150	1.94	0.1638
b30	0.17653130	0.10649314	120.95921365	2.75	0.0975
b36	0.33049199	0.03644918	3618.97163330	82.21	0.0001
b41	-0.06547397	0.02191369	392,95701427	8.93	0.0028
b42	-0.10787452	0.02886020	615.00390051	13.97	0.0002
643	-0.76926327	0.35510909	206.56901994	4.69	0.0304
b45	0.38774272	0.14792264	302.45221899	6.87	0.0088
b46	0.50488052	0.22537511	220.90427759	5.02	0.0252
b51	6.37207789	2.60732318	262.91248123	5.97	0.0146
b58	1.50610642	0.58766078	289.13235151	6.57	0.0105
EIFO	0.25814270	0.43694315	15.36415258	0.35	0.5547
LIEO	-0.73938024	0.51540446	90.58955309	2.06	0.1516
b60	-0.22209826	0.12628242	136.15803590	3.09	0.0788
b98	-0.00054969	0.00687839	0.28112674	0.01	0.9363
b100	-0.01256039	0.00617839	181.92582464	4.13	0.0422
b107	0.09984113	0.19027899	12.11926099	0.28	0.5998
b108	0.09396002	0.10231450	37.12364262	0.84	0.3586

Table (2) Cont. : Regression results for PLO22

Variable	Parameter Estimate	standard Error
b109	0.01860060	0.02791455
b110	0.34455422	0.06766206
b111	0.02507054	0.03603753
b112	-0.04007378	0.02665464
b113	-0.12060800	0.02678771
b114	-0.16745071	0.04445791
b115	0.16858346	0.12312915
b116	0.09308818	0.03009269
b123	0.50513349	0.42869583
b127	-0.89893333	0.55177512
b128	-0.63491473	0.14210928
b129	-0.06662011	0.05334800
AUDIT	1.56340456	1.27871211
b172	-0.30515482	0.15465414
b181	-0.48008347	0.17959141
b216	-0.18242916	0.21504183
b235	0.17814744	0.06080663
b248	0.99970450	1.03494317
b249	-0.06564155	0.01712037
b278	0.98165940	1.42081086
FORTUNE	-1.01560599	0.67289091
BOADA	1.50367254	0.61225201
B0NDB	-1.09641287	0.46642487
STOCRA	3.36049962	0.55587345
STOCKB	-0.28297459	0.42177522
b283D	-9.25048544	3.43851693
papera	-9.04897465	3.47248877
b1_6	4.49878332	2.49993481
b2_6	-4.86835845	3.04781902
b3-6	-4.08152462	2.14252413
b4-6	-0.57385733	2.19297502
b7 6	-0.70715545	0.53546637
b8-6	2.49452566	1.48677562
b5-6	-0.79724694	1.89754620
b9 6	0.18748228	1.74527861
b181_6	5.11464022	9.38781246
b60_6	0.09423041	4.64445345
b36.6	-1.67338459	0.84644939
b216_6	0.24850511	10.25464803
b235-6	2.89931578	2.99551865
b12_172	-0.00046961	0.00343147
b13-172	0.03371083	0.01078588
b14-172	-0.04372178	0.01988793
b15_172	0.00621552	0.01004853
b16-172	-0.13269697	0.07014768
b41 172	0.00021604	0.00443013
b9_216	-0.16111722	0.10383173
b5b9 216	0.03250957	0.04946422
b13_15	0.00075538	0.00088901
b1_15	-0.00049559	0.00057997
b172_12	-0.10362243	0.27467568
b172-60	-0.09329021	0.19591223
b172 216	0.03013398	0.24115277
b2_12	0.13603208	0.48786099

Table (3): Regression results for PCY24 with all variables

included

Dependent Variable PC24

	DF	Sum of Squares
Regression	94	561244.56960371
Error	1888	154571.74787031
Total	1982	715816.31747402
	Parameter	Standard
Variable	Estimate	or
INTERCEP	16.36466890	13.78790034
nyse	0.04116388	0.99222296
AMEX	-1.76837338	1.08695885
EYRD	-0.01591514	0.48426924
bl	0.00290211	0.02216066
b2	0.21387606	0.06383124
b3	-0.17261947	0.03316765
b4	0.04773911	0.04348628
b5	-0.02954350	0.00912985
b6	0.52309715	0.24619995
b7	-0.02595691	0.03954420
b8	-0.12508389	0.06518861
b9	-0.04019824	0.02800097
b12	0.06972551	0.02548275
b13	0.32920636	0.13196597
b14	0.88358851	0.31474712
b15	0.93312268	0.13743645
b16	4.39990093	0.35111808
b18	-2.07564045	0.24786354
b19	-1.62113387	1.03283684
b21	0.24993657	0.84754741
b26	3.03022031	0.64108360
b28	1.25517182	0.44840525
b29	-0.02317561	0.01374651
b30	0.24845328	0.14523333
b36	0.11876423	0.04970870
b41	-0.07718128	0.02988548
b42	-0.17251300	0.03935900
b43	-0.71987542	0.48429107
b45	0.38751473	0.20173411
b46	0.84755459	0.30736232
b51	7.80477940	3.55581811
b58	2.09306463	0.80144068
FIFO	0.14689991	0.59589481
LIEO	-0.77452992	0.70289887
b60	-0.27172154	0.17222158
b98	-0.01174548	0.00938062
b100	-0.00683868	0.00842597
b107	0.04377491	0.25949889
b108	0.23189851	0.13953459
b109	0.02524087	0.03806933

Mean Square	F	Prob>E
5970.68691068	72.93	0.0000
81.87062917		

Sum of Sqpe II

115.33106493	1.41	0.2354
0.14091011	0.00	0.9669
216.69548094	2.65	0.1039
0.08842505	0.00	0.9738
1.40407549	0.02	0.8958
919.14905566	11.23	0.0008
2217.57425396	27.09	0.0001
98.66705341	1.21	0.2724
857.28464552	10.47	0.0012
369.58718390	4.51	0.0337
35.27510998	0.43	0.5116
301.43063753	3.68	0.0552
168.73139381	2.06	0.1513
612.94125949	7.49	0.0063
509.49585971	6.22	0.0127
645.21540405	7.88	0.0050
3773.88909589	46.10	0.0001
12856.04927262	157.03	0.0001
5741.25841918	70.13	0.0001
201.69839801	2.46	0.1167
7.11966797	0.09	0.7681
1829.14106538	22.34	0.0001
641.49476707	7.84	0.0052
232.70501147	2.84	0.0920
239.59899734	2.93	0.0873
5810.35215717	70.97	0.0001
546.04891166	6.67	0.0099
1572.83709107	19.21	0.0001
180.89638447	2.21	0.1373
302.09664384	3.69	0.0549
622.53281019	7.60	0.0059
394.43034310	4.82	0.0283
558.40672967	6.82	0.0091
4.97544532	0.06	0.8053
99.40742853	1.21	0.2706
203.79855844	2.49	0.1148
128.35305050	1.57	0.2107
53.93037139	0.66	0.4171
3.32974093	0.03	0.8661
25.99035543	2.76	0.0967
10.44	0.5074	

Table (3) Cont. : Regression results for PCY24

Variable	Parameter Estimate	Standard Error
b110	0.49765750	0.09227623
b111	0.05107421	0.04914730
b112	-0.06214284	0.03635109
b113	-0.15664459	0.03653257
b114	-0.21672717	0.06063086
b115	-0.02132951	0.16792121
b116	0.12633298	0.04103984
b123	0.93433947	0.58464728
b127	-0.32955046	0.75250049
b128	-0.91703631	0.19380595
b129	-0.10562193	0.07275499
AUDIT	1.47147514	1.74388343
b172	-0.41745595	0.21091440
b181	-0.55999515	0.24492337
b216	-0.24533225	0.29326999
b235	0.24847003	0.08292693
b248	0.87719202	1.41143595
, b249	-0.08133919	0.02334844
b278	-0.69009982	1.93767502
FORTINE	-2.48330174	0.91767592
BOMDA	1.65647016	0.83497772
BONDB	-1.21179917	0.63610144
STOCKA	3.25679536	0.75808971
STOCKB	-0.70081230	0.57520908
b283D	-13.12424523	4.68938444
PAPERA	-12.63020981	4.73571461
b1_6	5.72953165	3.40936388
b2-6	-7.24975201	4.15655802
b3-6	-7.12444611	2.92193394
b4-6	0.68104852	2.99073791
$\mathrm{b7}^{-6}$	-1.12264645	0.73025892
bB^{-6}	3.78866501	2.02763651
b5_6	-0.19670731	2.58783767
b9-6	0.85067226	2.38017801
b181_6	4.31900990	12.80292133
b60_6	0.28196943	6.33401789
b36-6	-1.58886140	1.15437169
b216] 6	-1.78407255	13.98509531
b235-6	4.32482044	4.08523176
b12 172	-0.00030419	0.00467977
b13-172	0.04453212	0.01470958
b14_172	-0.05615411	0.02712278
b15-172	0.00652551	0.01370399
b16 172	-0.16334654	0.09566608
b41 172	-0.00046350	0.00604173
b9_216	-0.18058309	0.14160375
b5b9_216	0.04326587	0.06745837
b13_15	0.00144286	0.00121242
b1_15	-0.00107967	0.00079095
b172_12	0.01116567	0.37459750
b172-60	-0.08292387	0.26718140
b172-216	0.04136490	0.32887960
b2_12	0.10596159	0.66533560

Type II Sum of Squares 2381.27476714 88.41623682 239.26285855 1505.21504570 1046.08596697 1.32092691 775.80112794 209.09788968 15.70212406 1833.01899526 172.54832644 58.29067482 320.72808433 427.99254050 57.29307676 734.99591425 31. 62242150 993.60117562 10.38460719 599.52658334 322.21487467 297.12327981 1511.01182594 121.52904507 641.27620502 582.34213375 231. 21694742 249.06157816 486.73161092
4.24548708 193.49083431 285.83824605 0.47303693 10.45764255 9.31704888 0.16224586 155.09893703 1.33236216 91.75524315 0.34591223 750.36838059 350.93192906 18.56360381 238.68877923 0.48183880 133.14743669 33.67808166 115.95110251 152.55010021 0.07273905 7.88632683 1.29514456 2.07655535

F	Prob>F
29.09	0.0001
1.08	0.2988
2.92	0.0875
18.39	0.0001
12.78	0.0004
0.02	0.8989
9.48	0.0021
2.55	0.1102
0.19	0.6615
22.39	0.0001
2.11	0.1467
0.71	0.3989
3.92	0.0479
5.23	0.0223
0.70	0.4030
8.98	0.0028
0.39	0.5344
12.14	0.0005
0.13	0.7218
7.32	0.0069
3.94	0.0474
3.63	0.0569
18.46	0.0001
1.48	0.2232
7.83	0.0052
7.11	0.0077
2.82	0.0930
3.04	0.0813
5.95	0.0148
0.05	0.8199
2.36	0.1244
3.49	0.0618
0.01	0.9394
0.13	0.7208
0.11	0.7359
0.00	0.9645
1.89	0.1689
0.02	0.8985
1.12	0.2899
0.00	0.9482
9.17	0.0025
4.29	0.0386
0.23	0.6340
2.92	0.0879
0.01	0.9389
1.63	0.2024
0.41	0.5214
1.42	0.2342
1.86	0.1724
0.00	0.9762
0.10	0.7563
0.02	0.8999
0.03	0.8735

Table (4): Regression results for PC199 with all variables

included

Dependent Variable PC199 R-square $=0.77647920$

	DF	Sum of Squares	Moan Square	F	Prob>F
Regression	94	567415.91780369	6036.33955110	69.77	0.0000
Error	1898	163338.90351379	86.51424974		
Total	1982	730754.82131748			
	Parameter	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	E	Prob $>$ E
InTERCEP	21.05558271	14.17352567	190.92657706	2.21	0.1376
NYSE	-0.35671306	1.01997384	10.58150862	0.12	0.7266
AMEX	-2.41816948	1.11735934	405.20555415	4.68	0.0306
FYRD	-2.91153860	0.49781347	2959.37135759	34.21	0.0001
b1	0.00442711	0.02278046	3.26741269	0.04	0.8459
b2	0.20042259	0.06561649	807.15129833	9.33	0.0023
b3	-0.16056012	0.03409530	1918.55369095	22.18	0.0001
b4	0.08241558	0.04470252	294.06423423	3.40	0.0654
b5	-0.03191492	0.00938520	1000.43419512	11.56	0.0007
b6	0.54639470	0.25308577	403.24143729	4.66	0.0310
b7	-0.02209199	0.04065019	25.55242123	0.30	0.5869
b8	-0.13206795	0.06701183	336.03112950	3.88	0.0489
b9	-0.03080146	0.02878412	99.06596882	1.15	0.2847
b12	0.06429569	0.02619546	519.57384389	6.01	0.0144
b13	0.30983041	0.13565684	451.28646732	5.22	0.0225
b14	0.85321003	0.32355009	601.61202631	6.95	0.0084
b15	0.89593221	0.14128238	3479.06019731	40.21	0.0001
b16	4.70648666	0.36093829	14710.09229827.	170.03	0.0001
b18	-2.06106132	0.25479588	5660.88941831	65.43	0.0001
b19	-2.22643157	1.06172362	380.43756186	4.40	0.0361
b21	0.35814597	0.87125194	14.61908717	0.17	0.6811
b26	2.90689327	0.65901368	1683.28233165	19.46	0.0001
b28	1.36105413	0.46094642	754.28862160	8.72	0.0032
b29	-0.02483400	0.01413098	267.20024203	3.09	0.0790
b30	0.24630166	0.14929527	235.46707889	2.72	0.0992
b36	0.40418133	0.05109897	5412.72300881	62.56	0.0001
b41	-0.07536773	0.03072133	520.68915754	6.02	0.0142
b42	-0.19145752	0.04045980	1937.24680688	22.39	0.0001
b43	-0.71763458	0.49783591	179.77194294	2.08	0.1496
b45	0.54690625	0.20737628	601.72090004	6.96	0.0084
646	0.81512111	0.31595874	575.79935678	6.66	0.0100
b51	8.23820889	3.65526861	439.45524427	5.08	0.0243
b58	2.38487178	0.82385568	724.96231922	8.38	0.0038
FIFO	0.10677399	0.61256103	2.62857195	0.03	0.8616
LIFO	-0.77334778	0.72255782	99.10421529	1.15	0.2846
b60	-0.25742172	0.17703834	182.91248792	2.11	0.1461
b98	-0.00867849	0.00964298	70.07346142	0.81	0.3682
b100	-0.00523825	0.00866163	31.64173878	0.37	0.5454
b107	0.04670099	0.26675665	2.65160838	0.03	0.8610
b108	0.27961252	0.14343715	328.75895612	3.80	0.0514
b109	0.02188684	0.03913407	27.06099133	0.31	0.5760

Table (4) Cont. : Regression results for PC199

Variable	Parameter Estimate	Standard Error
b110	0.51095657	0.09485705
blll	0.04545326	0.05052187
b112	-0.05798259	0.03736778
b113	-0.14610973	0.03755432
b114	-0.21996420	0.06232661
b115	-0.10393103	0.17261770
b116	0.11765577	0.04218765
b123	1.04418983	0.60099892
b127	-0.45277064	0.77354671
b128	-0.81199438	0.19922639
b129	-0.10411647	0.07478983
AUDIT	1.06020315	1.79265703
b172	-0.32713284	0.21681333
b181	-0.58321123	0.25177348
b216	-0.25652417	0.30147228
b235	0.21381096	0.08524627
b248	0.95788253	1.45091154
b249	-0.07975408	0.02400146
b278	-0.80488636	1.99186866
FORTUAE	-2.89746650	0.94334183
BONDA	1.97261294	0.85833070
BONDB	-1.17534490	0.65389217
STOCKA	2.99845937	0.77929226
STOCKB	-0.97138432	0.59129675
b283D	-11.63167206	4.82053896
papera	-10.92253938	4.86816491
b1_6	6.07821061	3.50471828
b2-6	-6.52120724	4.27281024
b3-6	-7.64833944	3.00365572
b4-6	-0.55231272	3.07438402
b7-6	-1.20919258	0.75068309
b8-6	3.87160729	2.08434623
b5_6	0.51482957	2.66021531
b9 6	0.98534525	2.44674775
b181_6	2.08347557	13.16099839
b60 6	0.14964201	6.51117015
b36-6	-1.33028784	1.18665760
b215] 6	-4.90219336	14.37623586
b235-6	5.60969440	4.19948910
b12_172	-0.00186032	0.00481066
b13_172	0.04251045	0.01512098
b14_172	-0.05911866	0.02788136
b15_172	0.00872733	0.01408727
b16_172	-0.15958916	0.09834171
b41-172	0.00193156	0.00621070
b9 ${ }^{2} 16$	-0.15929013	0.14556418
b5b9_216	0.04195173	0.06934307
b13 15	0.00116624	0.00124633
b1 15	-0.00097325	0.00081307
b172_12	0.13103826	0.38507439
'b172_60	-0.04445505	0.27465403
b172-216	0.14530763	0.33807783
b2_12	0.11708312	0.68394397

TYPe II		
Sum of Squares	E	Prob>F
2510.24655019	29.02	0.0001
70.02591052	0.81	0.3684
208.29957096	2.41	0.1209
1309.56191373	15.14	0.0001
1077.56798686	12.46	0.0004
31.36226897	0.36	0.5472
672.88888861	7.78	0.0053
261.15549845	3.02	0.0825
29.63951320	0.34	0.5584
1437.14288025	16.61	0.0001
167.66459597	1.94	0.1640
30.26017295	0.35	0.5543
196.95361211	2.28	0.1315
464.21527251	5.37	0.0206
62.63966791	0.72	0.3949
544.24799513	6.29	0.0122
37.70772043	0.44	0.5092
955.25264246	11.04	0.0009
14.12652622	0.16	0.6862
816.18067164	9.43	0.0022
456.94308275	5.28	0.0217
279.51558576	3.23	0.0724
1280.80572054	14.80	0.0001
233.48492220	2.70	0.1006
503.71020624	5.82	0.0159
435.51620777	5.03	0.0250
260.21534671	3.01	0.0830
201.51920315	2.33	0.1271
560.94676803	6.48	0.0110
2.79216777	0.03	0.8574
224.47362935	2.59	0.1074
298.49050558	3.45	0.0634
3.24026871	0.04	0.8466
14.03091874	0.16	0.6872
2.16813739	0.03	0.8742
0.04569583	0.00	0.9817
108.72465533	1.26	0.2624
10.05954046	0.12	0.7331
154.37363620	1.78	0.1818
12.93760722	0.15	0.6990
683.78431877	7.90	0.0050
388.96355971	4.50	0.0341
33.20447486	0.38	0.5356
227.83418179	2.63	0.1048
8.36801219	0.10	0.7558
103.59919304	1.20	0.2740
31.66329841	0.37	0.5453
75.75252404	0.88	0.3495
123.95834980	1.43	0.2315
10.01831290	0.12	0.7337
2.26651091	0.03	0.8714
2.98199888	0.18	0.6674
	0.03	0.8641

Table (5): Regression results for PHI22 without the

accounting ratios

Dependent Variable PHI22

	DF
Regression	68
Error	2018
Total	2086

Variable	Parameter Estimate	Standard Error
INTERCEP	20.3.5341481	6.35498081
NYSE	1.33069398	1.28813777
Arex	-0.69302616	1.40049226
EYRD	0.69603401	0.62365821
b1	0.01318022	0.02669610
b2	0.16525100	0.06899826
b3	-0.23008202	0.04030323
b4	0.14325945	0.04891180
b5	-0.04164111	0.01080005
b6	0.42819615	0.19615717
b7	-0.10145391	0.04615922
b8	-0.01200397	0.07380125
b9	-0.02410127	0.03300334
b12	0.12713201	0.03201933
b13	0.49281840	0.17012688
b14	0.26153833	0.32210786
b15	1.03140265	0.16886885
b16	4.84964573	0.45694960
b18	-2.41509225	0.32918110
b19	0.37840973	1.30438483
b21	0.05065970	1.06871690
b25	0.04186422	0.00780776
b26	3.58006076	0.83402585
b28	4.92443464	0.55401227
b29	-0.05994914	0.02012430
b30	0.23952155	0.19489660
b36	0.55024482	0.05776108
b41	-0.12399565	0.03767751
b42	-0.14675725	0.05280468
b43	-0.70303594	0.58840552
b45	0.46255420	0.27006741
b46	1.08523987	0.40666732
b51	10.04458922	4.74943410
b58	-0.09137317	1.02857991
EIFO	-0.65387947	0.73598464
LIEO	-2.63537132	0.89173146
b60	-0.19072433	0.18599894
b98	-0.02425270	0.01233584
b100	-0.05330399	0.01223385
b107	0.23505464	0.34695685
b108	0.25861550	0.18666892
b109	0.06166622	0.05033240

990830.59335696
303518.66906167
1294349.2624186
Mean Square
14571.03813760
150.40568338

Type II Sum of Squares 1542.80247641 160.50774682 36.83002978 187.34058646 36.66182059 862.73244933 4901.73674891 1290.27890097 2235. 92515870 716.70661674 726.59242082 3.97911584 80.20993042 2371. 09844246
1262.09542912 99.15902986
5610.75936833
16941. 33641669 8095.84003533 12.63835731 0.33795906
4324. 11415377
2771.31583064
11883.33211386
1334.71506033 227.16683460 13649.14810728
1628.96904683
1161.76563007 214.71670036 441.20977755
1071. 11769166 672.73632270
1.18693112
118.71952346
1313.65010639 158.14502009 581. 36277198 2855.33805758 69.03208096 288.68840673 225.76864604

F Prob>F
96.88
0.0000
.

Table (5) Cont. : Regression results for PHI22

Variable	ParameterEstimate	Standard	Type II		
			Sum of Squares	F	Prob>F
b110	0.56665588	0.12091204	3303.42136188	21.96	0.0001
b111	0.04300892	0.06537438	65.09777688	0.43	0.5107
b112	-0.07856905	0.04826407	398.58367664	2.65	0.1037
b113	-0.18665613	0.04738822	2333.50060082	15.51	0.0001
b114	-0.22625790	0.07998813	1203.42954826	8.00	0.0047
b115	-0.05501936	0.22386575	9.08489853	0.06	0.8059
b116	0.11933454	0.05243678	778.97686058	5.18	0.0230
b123	1.54772638	0.74008313	657.79658150	4.37	0.0366
b127	-0.34193556	0.93445742	20.13880704	0.13	0.7145
b128	-0.50582700	0.25184764	606.72582219	4.03	0.0447
b129	-0.13327611	0.09689093	284.57886489	1.89	0.1691
AUDIT	-0.69750698	1.67329906	26.13450175	0.17	0.6768
b172	-0.80111806	0.27731097	1255.22961520	8.35	0.0039
b181	-0.46550372	0.19501100	857.02268500	5.70	0.0171
b216	-0.33616860	0.25501294	261.36902045	1.74	0.1876
b235	0.47291108	0.09834546	3477.87968358	23.12	0.0001
b248	1.13083095	1.90095036	53.22529369	0.35	0.5520
b249	-0.10940451	0.03115280	1854.98578490	12.33	0.0005
b278	-0.76947715	2.56701383	13.51447842	0.09	0.7644
FORTUNE	-2.81631235	1.21853922	803.42781623	5.34	0.0209
BONDA	1.96433441	1.11550081	466.39653261	3.10	0.0784
BONDB	-1.05299015	0.82746661	243.56333153	1.62	0.2033
STOCKA	4.26563872	0.95798786	2982.03250081	19.83	0.0001
stocks	-1.13465874	0.72203175	371.43444677	2.47	0.1162
b283D	-12.17125990	6.14600635	589.86049423	3.92	0.0478
PAPERA	-11.29438107	6.20440027	498.41316457	3.31	0.0688

Table (6): Regression results for PLO22 without the

accounting ratios

Dependent Variable PLO23 R-acquare $=0.800$

	DF	Sum of Squares
Regression	68	359870.51201476
Error	2018	89678.75357757
Total	2086	449549.26559233

Mean Square	F	Prob>E
5292.21341198	119.09	0.0000
44.43942199		

Variable	$\begin{aligned} & \text { Parameter } \\ & \text { Estimate } \end{aligned}$	Standard Error	Type II Sum of Squares	F	Prob>E
INTERCEP	12.60220486	3.45434986	591.46469965	13.31	0.0003
NYSE	-0.73915673	0.70018756	49.52365405	1.11	0.2913
MPEX	-2.04753982	0.76125962	321.49004566	7.23	0.0072
EYRD	0.52659362	0.33899924	107.23144018	2.41	0.1205
b1	0.00807407	0.01451109	13.75794305	0.31	0.5780
b2	0.06371157	0.03750509	128.24029388	2.89	0.0895
b3	-0.16360346	0.02190745	2478.38952916	55.77	0.0001
b4	0.07421210	0.02658678	346.24731025	7.79	0.0053
b5	-0.02447558	0.00587054	772.46446302	17.38	0.0001
b6	0.25905290	0.10662432	262.32085134	5.90	0.0152
b7	-0.04293108	0.02509057	130.10406229	2.93	0.0872
b8	-0.02091459	0.04011583	12.07912142	0.27	0.6022
b9	-0.02501619	0.01793949	86.41530795	1.94	0.1633
b12	0.06593423	0.01740461	637.76649150	14.35	0.0002
b13	0.29645296	0.09247514	456.69887651	10.28	0.0014
b14	0.26180409	0.17508680	99.36065501	2.24	0.1350
b15	0.63313524	0.09179132	2114.25871860	47.58	0.0001
b16	2.91524308	0.24838215	6121.77248205	137.76	0.0001
b18	-1.45822287	0.17893157	2951.49656200	66.42	0.0001
b19	-0.73687384	0.70902891	47.99975697	1.08	0.2988
b21	0.44863692	0.58091789	26.50506808	0.60	0.4400
b25	0.01872950	0.00424403	865.49330620	19.48	0.0001
b26	2.72612328	0.45334788	1606.92724009	36.16	0.0001
b28	-0.28216085	0.30114209	39.01386597	0.88	0.3489
b29	-0.03510638	0.01093888	457.71448121	10.30	0.0014
b30	0.19151878	0.10593911	145.23739702	3.27	0.0708
b36	0.26485916	0.03139694	3162.44964623	71.16	0.0001
b41	-0.07220796	0.02048020	552.42086590	12.43	0.0004
b42	-0.10701134	0.02870282	617.70205423	13.90	0.0002
b43	-0.58755068	0.31983708	149.96897876	3.37	0.0664
b45	0.39128000	0.14679939	315.71497023	7.10	0.0078
b46	0.61021375	0.22105042	338.64890923	7.62	0.0058
b51	8.38811461	2.58162967	469.14730543	10.56	0.0012
b58	1.24543793	0.55910080	220.51206106	4.96	0.0260
EIFO	-0.19937793	0.40005604	11.03775936	0.25	0.6183
IIPO	-1.38579245	0.48471467	363.23898434	8.17	0.0043
b60	-0.13123521	0.10110265	74.87624586	1.68	0.1944
b98	0.00252763	0.00670534	6.31470297	0.14	0.7062
b100	-0.02183346	0.00664990	479.05248164	10.78	0.0010
b107	0.23327551	0.18859386	67.99103236	1.53	0.2163
b108	0.09153148	0.10146683	36.16272534	0.81	0.3671
b109	0.03182580	0.02735897	60.13505969	1.35	0.2449

Table (6) Cont. : Regression results for PLO22

	Paramoter
Variable	Estimate
b110	0.31387322
b111	0.01384862
b112	-0.02766243
b113	-0.10193998
b114	-0.12192596
b115	0.24754766
b116	0.05496824
b123	0.59758210
b127	-0.299998332
b128	-0.45451633
b129	-0.05244919
AUDIT	0.18173861
b172	-0.31800200
b181	-0.28176372
b216	-0.11312530
b235	0.23611417
b248	1.103008806
b249	-0.05991145
b278	0.88345282
FORTUNE	-0.82636271
BONDA	1.60370188
BONDB	-0.96150635
STOCKA	2.85567343
STOCKB	-0.64973100
b283D	-8.80251320
PAPERA	-8.61748566

Standard
Error
0.06572364
0.03553527
0.02623469
0.02575861
0.04347881
0.12168575
0.02850284
0.40228383
0.50793904
0.13689575
0.05266659
0.90954804
0.15073675
0.10600130
0.13861630
0.05345723
1.03329149
0.01693359
1.39534078
0.66235617
0.60634803
0.44978250
0.52072938
0.39247173
3.34075850
3.37249943

Type II Sum of Squares

E	Prob>F
22.81	0.0001
0.15	0.6968
1.11	0.2918
15.66	0.0001
7.86	0.0051
4.14	0.0420
3.72	0.0539
2.21	0.1376
0.35	0.5562
11.02	0.0009
0.99	0.3194
0.04	0.8416
4.45	0.0350
7.07	0.0079
0.65	0.4187
19.51	0.0001
1.14	0.2859
12.48	0.0004
0.40	0.5267
1.56	0.2123
7.00	0.0082
4.57	0.0327
30.07	0.0001
2.74	0.0980
6.94	0.0085
6.53	0.0107

Table (7): Regression results for PCY24 without the

accounting ratios

Dependent Variable PCY24 R-square $=0.77479$

	DF	Sum of Squares
Regression	68	566163.23220969
Brror	2018	164559.66410632
Total	2086	730722.89631601

Variable INTERCP
NYSE
AMEX
EYRD
b1
b2
b3
b4
b5
b6
b7
b8.
b9
b12

Paramater	Standard
Estimate	Error
17.68732773	4.67932527
-0.53604406	0.94848684
-2.26238649	1.03121615
0.70842276	0.45921455
0.01283700	0.01965698
0.13915606	0.05080508
-0.21898745	0.02967624
0.06421964	0.03601493
-0.02935718	0.00795234
0.32517855	0.14443524
-0.02544727	0.03398814
-0.05384615	0.05434164
-0.04473293	0.02430115
0.08267659	0.02357660
0.40860864	0.12526852
0.19737741	0.23717577
0.90313574	0.12434220
4.09943628	0.33646299
-1.98849645	0.24238396
-1.06793450	0.96044994
-0.15171573	0.78692196
0.02808081	0.00574904
2.85531388	0.61411330
1.18280827	0.40793256
-0.05339746	0.01481801
0.27913039	0.14350705
0.35060100	0.04253087
-0.08798256	0.02774285
-0.16754471	0.03888136
-0.50579249	0.43325714
0.39218212	0.19885714
0.95260422	0.29943893
10.50741161	3.49712260
1.57581445	0.75736814
-0.36280738	0.54192320
-1.51058082	0.65660333
-0.15748832	0.13695549
-0.00741025	0.00908317
-0.02119920	0.00900808
0.21141041	0.25547267
0.04368636	0.13744882
0.03706096	

Moan Square
8325.92988544
81.54591878

Type II Sum of Squares 1165.09196035 26.04597291 392.49706611 194.06891227
34.77726864 611.77563869
4440. 41000594 259.28220387
1111.32546315 413. 33259938 45.71193048 80.06563859 276.31410384
1002.77812968 867.62776969 56.47503000
4302.00803011
12105.31011495
5488.37922694 100.81891138 3.03109881
1945.49589992
1762.84018097 685.57375110
1058.92161681 308.51053281
5541.40535116 820.14974907
1514. 19173316 111. 13619750 317.17244361 825.29785355 736.15964426 353.01920280 36.54929216 431.60255396 107.83010834 54.27405292 451. 62414338 55.84265671 244.96478631 113.30803290

Erob>F	
102.10	0.0000

F	$\mathrm{Prob} \boldsymbol{F}$
14.29	0.0002
0.32	0.5720
4.81	0.0284
2.38	0.1231
0.43	0.5138
7.50	0.0062
54.45	0.0001
3.18	0.0747
13.63	0.0002
5.07	0.0245
0.56	0.4541
0.98	0.3219
3.39	0.0658
12.30	0.0005
10.64	0.0011
0.69	0.4054
52.76	0.0001
148.45	0.0001
67.30	0.0001
1.24	0.2663
0.04	0.8471
23.86	0.0001
21.62	0.0001
8.41	0.0038
12.99	0.0003
3.78	0.0519
67.95	0.0001
10.06	0.0015
18.57	0.0001
1.36	0.2432
3.89	0.0487
10.12	0.0015
9.03	0.0027
4.33	0.0376
0.45	0.5033
5.29	0.0215
1.32	0.2503
0.67	0.4147
5.54	0.0187
0.68	0.4080
1.00	0.0832
1.39	0.2386

Table (7) Cont. : Regression results for PCY24

	Parameter
Variable	Estimate
b110	0.45242086
b111	0.03635245
b112	-0.04774110
b113	-0.13372248
b114	-0.16694509
b115	0.07273988
b116	0.07859934
b123	0.99756348
b127	0.12281792
b128	-0.68247745
b129	-0.09006587
A0DIT	0.33805741
b172	-0.43433663
b181	-0.35807148
b216	-0.21827396
b235	0.33596281
b248	0.98186801
b249	-0.07436782
b278	-0.96263654
FORHUN	-2.20256509
BOLDA	1.67058904
BONDB	-1.09208342
SYOCKA	2.87183142
SYOCKB	-1.00105958
b283D	-12.11424511
PAPERA	-11.69229009

Standard
Error
0.08903044
0.04813673
0.03553799
0.03489309
0.05889718
0.16483774
0.03861046
0.54494101
0.68806348
0.18544148
0.07134312
1.23209036
0.20419074
0.14359129
0.18777216
0.07241413
1.39971549
0.02293856
1.89015405
0.89723974
0.82137009
0.60929358
0.70538951
0.53164935
4.52545235
4.56844919

Type II		
Sum of Squares	Prob>F	
2105.76747106	25.82	0.0001
46.50680848	0.57	0.4502
147.16389138	1.80	0.1793
1197.65646324	14.69	0.0001
655.17974527	8.03	0.0046
15.87940133	0.19	0.6591
337.93256544	4.14	0.0419
273.26519539	3.35	0.0673
2.59817686	0.03	0.8583
1104.49836672	13.54	0.0002
129.96264664	1.59	0.2069
6.13900561	0.08	0.7838
368.96319804	4.52	0.0335
507.09048777	6.22	0.0127
110.19037934	1.35	0.2452
1755.24600975	21.52	0.0001
40.12628122	0.49	0.4831
857.11715933	10.51	0.0012
21.15107840	0.26	0.6106
491.40857059	6.03	0.0142
337.33680010	4.14	0.0421
261.98408828	3.21	0.0732
1351.64336243	16.58	0.0001
289.11558635	3.55	0.0599
584.34717788	7.17	0.0075
534.15069194	6.55	0.0106

Table (8): Regression results for PC199 without the

accounting ratios

Depenclont Variable PC199 R-square - 0.76651584

	DE	Sum of Squares
Regression	68	572425.67643109
Error	2018	174363.42539782
Total	2086	746789.10182891

Mean Square	F	Prob>E
8418.02465340	97.43	0.0000
86.40407601		

Paramoter Eatimate	Standard Error	Type II Sum of Squares	F	Prob>F
20.11373896	4.81669598	1506.68123320	17.44	0.0001
0.00012957	0.00013819	75.95950980	0.88	0.3486
-0.88526828	0.97633151	71.03778724	0.82	0.3647
-2.88265333	1.06148951	637.21744099	7.37	0.0067
-2.08812265	0.47269568	1686.09859044	19.51	0.0001
0.01418083	0.02023405	42.43967799	0.49	0.4835
0.13523205	0.05229656	577.75966905	6.69	0.0098
-0.21071247	0.03054744	4111.16649631	47.58	0.0001
0.08639841	0.03707222	469.29781645	5.43	0.0199
-0.03120250	0.00818579	1255.42712181	14.53	0.0001
0.37075076	0.14867542	537.30389608	6.22	0.0127
-0.02570478	0.03498593	46.64176168	0.54	0.4626
-0.05366519	0.05593694	79.52838849	0.92	0.3375
-0.03553068	0.02501456	174.32335498	2.02	0.1556
0.07715067	0.02426874	873.21096630	10.11	0.0015
0.38236950	0.12894602	759.77471376	8.79	0.0031
0.19009600	0.24413853	52.38507064	0.61	0.4363
0.87665184	0.12799250	4053.39994545	46.91	0.0001
4.39315210	0.34634051	13902.09070062	160.90	0.0001
-1.97426402	0.24949961	5410.09550034	62.61	0.0001
-1.63272024	0.98864581	235.65192848	2.73	0.0988
-0.03571724	0.81002359	0.16799438	0.00	0.9648
0.02966852	0.00591782	2171.71568961	25.13	0.0001
2.80028996	0.63214179	1695.55247944	19.62	0.0001
1.32446119	0.41990822	859.61493842	9.95	0,0016
-0.05767662	0.01525302	1235.44173978	14.30	0.0002
0.27916110	0.14771998	308.57841659	3.57	0.0589
0.33915706	0.04377945	5185.55604992	60.02	0.0001
-0.08515667	0.02855730	768.31139114	8.89	0.0029
-0.18504495	0.04002279	1847.02973672	21.38	0.0001
-0.48270645	0.44597625	101.22247845	1.17	0.2792
0.56260728	0.20469497	652.72547734	7.55	0.0060
0.92427414	0.30822954	776.93970177	8.99	0.0027
10.93667362	3.59978744	797.53732696	9.23	0.0024
1.85192086	0.77960215	487.56555765	5.64	0.0176
-0.54644574	0.55783241	82.91265592	0.96	0.3274
-1.63250475	0.67587920	504.08640166	5.83	0.0158
-0.14692473	0.14097609	93.84973287	1.09	0.2974
-0.00404403	0.00934983	16.16429170	0.19	0.6654
-0.02054345	0.00927253	424.11640833	4.91	0.0268
0.21168047	0.26297257	55.98541326	0.65	0.4209
0.28459825	0.14148389	349.61066160	4.05	0.0444
0.04025072	0.03814895	96.18699797	1.11	0.2915

Table (8) Cont. : Regression results for PC199

	Parampter	Standard
Variable	Estimate	Error
b110	0.46598550	0.09164410
b111	0.03224202	0.04954988
b112	-0.04404309	0.03658128
b113	-0.12513858	0.03591744
b114	-0.17237251	0.06062623
b115	-0.00927786	0.16967687
b116	0.07177903	0.03974395
b123	1.11611282	0.56093882
b127	-0.00802455	0.70826292
b128	-0.57793659	0.19088547
b129	-0.08249593	0.07343754
AUDIT	0.08019821	1.26826077
b172	-0.35130405	0.21018516
b181	-0.40329892	0.14780670
b216	-0.26221128	0.19328458
b235	0.31850358	0.07453999
b248	1.12786456	1.44080686
b249	-0.07292239	0.02361196
b278	-1.27203605	1.94564320
FORTUNE	-2.72113070	0.92357996
BONDA	1.89185400	0.84548301
BONDB	-1.11463850	0.62717028
SIOCRA	2.65698311	0.72609760
SYOCAB	-1.24955423	0.54725695
b283D	-11.04420935	4.65830581
PAPERA	-10.41581368	4.70256492

Type II		
Sum of Squares	Prob>F	
2233.93215350	25.85	0.0001
36.58420722	0.42	0.5153
125.24835797	1.45	0.2287
1048.83177766	12.14	0.0005
698.47228803	8.08	0.0045
0.25833606	0.00	0.9564
281.83008193	3.26	0.0711
342.07350427	3.96	0.0468
0.01109140	0.00	0.9910
792.04315847	9.17	0.0025
109.03427898	1.26	0.2614
0.34549873	0.00	0.9496
241.37730939	2.79	0.0948
643.28010790	7.45	0.0064
159.01663619	1.84	0.1751
1577.55397630	18.26	0.0001
52.94641967	0.61	0.4338
824.12277744	9.54	0.0020
36.93232640	0.43	0.5133
750.03931557	8.68	0.0033
432.61313124	5.01	0.0254
272.91749005	3.16	0.0757
1156.96925285	13.39	0.0003
450.46584225	5.21	0.0225
485.67695661	5.62	0.0178
423.88791608	4.91	0.0269

Table (9): Final regression results for PHI22 without accounting ratios

Dependent Variable RHIZ2
R-square $=0.76248280$

	De	Sum of Squares	Maan Square	F	Prob>F
Regression	38	986919.04396544	25971.55378856	173.01	0.0000
Error	2048	307430.21845319	150.11241135		
Total	2086	1294349.2624186			
	Paramoter	standard	TYpe II		
Variable	Estimate	Error	Sum of Squares	E	Prob>F
INTERCEP	9.26180706	1.62254497	4891.19045132	32.58	0.0001
NYSE	1.81043112	0.63084310	1236.33994422	8.24	0.0041
b2	0.20034169	0.06354195	1492.23812823	9.94	0.0016
b3	-0.23806860	0.03204246	8286.46239002	55.20	0.0001
b4	0.12568565	0.04205124	1341.00503718	8.93	0.0028
b5	-0.05130753	0.00888492	5005.77570777	33.35	0.0001
b7	-0.11623451	0.01760271	6545.27361253	43.60	0.0001
b12	0.13242276	0.02843246	3256.21385177	21.69	0.0001
b13	0.54562341	0.13260774	2541.35218303	16.93	0.0001
b15	0.91825117	0.23743463	6701.11789492	44.64	0.0001
b16	4.96412058	0.41288356	21699.31722404	144.55	0.0001
b18	. -2.33816710	0.30470813	8838.92837816	58.88	0.0001
b25	0.04325127	0.00762631	4828.20298944	32.16	0.0001
b26	3.68340100	0.52324466	7438.83604907	49.56	0.0001
b28	4.85253552	0.52395421	12875.59721320	85.77	0.0001
b29	-0.06185789	0.01966621	1485.13256446	9.89	0.0017
b36	0.50811934	0.05011826	15429.65158349	102.79	0.0001
b41	-0.13398032	0.03374286	2366.65374366	15.77	0.0001
b42	-0.13427353	0.05168532	1013.12487830	6.75	0.0094
b45	0.38072014	0.26403695	312.10368228	2.08	0.1495
b46	1.11204437	0.38174327	1273.84927317	8.49	0.0036
b51	10.24648109	4.68633597	717.62778606	4.78	0.0289
LIFO	-2.20341438	0.77392730	1216.77036834	8.11	0.0045
b98	-0.02035542	0.01196847	434.20950259	2.89	0.0891
b100	-0.05401710	0.01131092	3423.60133078	22.81	0.0001
b110	0.55246451	0.11244772	3623.46515856	24.14	0.0001
b113	-0.13149045	0.02535589	4036.89293971	26.89	0.0001
b114	-0.18243232	0.06029284	1374.32245572	9.16	0.0025
b116	0.03839219	0.02313284	413.47030657	2.75	0.0971
b123	1.55767231	0.26251281	5285.27761634	35.21	0.0001
AODIT	-2.10762841	1.31861562	383.50254899	2.55	0.1101
b172	-0.74090078	0.24074232	1421.77815442	9.47	0.0021
b181	-0.03793104	0.00763282	3707.11752883	24.70	0.0001
b235	0.42241860	0.05063901	10445.57266213	69.59	0.0001
b249	-0.09498406	0.02856119	1660.21870206	11.06	0.0009
FORTUNE	-2.77047086	0.82484553	1693.47396525	11.28	0.0008
BONDA	2.61138585	0.95707135	1117.55797037	7.44	0.0064
STObra	3.95885590	0.93092000	2714.75891308	18.08	0.0001
s20bls	-1.44642636	0.70442081	632.91430320	4.22	0.0402

Table (10) : Final regression results for PHI22

Dependent Variable pHIs2

	DF	
	45	9
Regression	1937	2
Error	1982	1

Variable	Parameter Estimate	Standard Error
INTERbEP	10.90183114	1.42037832
NYSE	1.56574157	0.65641079
b2	0.26069229	0.07523627
b3	-0.21272646	0.03665018
b4	0.14359774	0.04623121
b5	-0.04742318	0.00895117
b7	-0.14761581	0.02181153
b9	-0.04908110	0.02884040
b12	0.11215494	0.02884315
b13	0.56996050	0.15834640
b14	0.85193936	0.40210995
b15	1.14296384	0.14799858
b16	5.03955784	0.44766814
b18	-2.35110519	0.31413452
b19	1.66130674	0.31463859
b25	0.04042661	0.00769841
b2 6	3.43750507	0.56865664
b28	4.95713036	0.56423902
b29	-0.05489017	0.01984888
b36	0.58508935	0.05715119
b41	-0.10984907	0.03395665
b42	-0.14470546	0.05250822
b45	0.42966685	0.25573984
b46	1.06981458	0.39391460
LIFO	-1.45660066	0.79025979
b98	-0.02564951	0.01222656
b100	-0.05481888	0.01124170
b110	0.65243823	0.11321220
b113	-0.08529661	0.01219693
b114	-0.17357510	0.06067321
b128	-0.44256791	0.18014035
b172	-0.95264226	0.27308744
b181	-0.05155164	0.00794304
b235	0.39052649	0.05865269
b249	-0.10773954	0.029198950
EORTME	-2.45450794	0.83425996
BOEDA	2.36804315	0.96762357
STObLA	5.21857071	0.83904297
b1_6	4.74276483	2.77960042
b2-6	-11.39131314	2.98817767
b3-6	-7.90479881	2.39224933
b36 6	-2.43777923	1.37956388
b216.6	-11.06539430	3.66195580
b235_6	8.52572937	3.50666700
b16 172	-0.09110885	0.04807412
b9_216	-0.15046786	0.08605352

\author{

WITH RATIOS
 | Mean Square | F | Prob>E |
| ---: | ---: | ---: |
| $\mathbf{2 1 6 7 9 . 2 9 7 4 9 0 2 6}$ | 144.70 | 0.0000 |
| 149.82243995 | | |

}

Sum of Squares
975568.38706172 290206.06619002 1265774.4532517

Type II Sum of Squares

E	Prob>E
58.91	0.0001
5.69	0.0172
12.01	0.0005
33.69	0.0001
9.65	0.0019
28.07	0.0001
45.80	0.0001
2.90	0.0890
15.12	0.0001
12.96	0.0003
4.49	0.0342
59.64	0.0001
126.73	0.0001
56.02	0.0001
27.88	0.0001
27.58	0.0001
36.54	0.0001
77.19	0.0001
7.65	0.0057
104.81	0.0001
10.47	0.0012
7.59	0.0059
2.61	0.1061
7.38	0.0067
3.40	0.0655
4.40	0.0360
23.78	0.0001
33.21	0.0001
48.91	0.0001
8.18	0.0043
6.04	0.0141
12.17	0.0005
42.12	0.0001
44.33	0.0001
13.72	0.0002
8.66	0.0033
5.99	0.0145
38.68	0.0001
2.91	0.0881
14.53	0.0001
10.92	0.0010
3.12	0.0774
9.13	0.0025
5.91	0.0151
3.59	0.0582
3.06	0.0805

PLOZ3 $R^{2}=$	17982
Regrassion	49
Error	1933
Total	1982

Sum of Squares

> 355980.06230242
> 84372.58189952
> 440352.64420194

WITH RATIOS

Mean Square
7264.89923066
43.64851624

Type II
Sum of Squares
1812.33543481 465.51139954 305.43976467 2723.58949744 539.52034802 2098.37897652 479.57847733 1801.53096270 199.26254894 625.11603563 571.50225638 2404.59999398 7697.32519250 3031.07999555 783.56734033 4776.61379862 279.97871183 4955.70331128 640.69079345 122.59941185 626.78990818 539.49155083 249.61295637
1647.05653562 131.97956537 756.30574037 1023.86352645 1774.54385013 712.41026380 113.49117511 519.50496632 684.19813061 275.41836976 523.34893515 319.19455281 1292.35113505 518.04637925 180.84573524 341.74611403 219.25850401
2680.23065608 156.23127941 502.20521004 410.83045570 115.24810126 327.36492869 675.78318313 408.87372402 438.12090814 213.75452491

F
166.44

Prob>F 0.0000

.Variable	Paramoter Estimate	standard Error	Type II Sum of Squares	F	Prob>F
INTEREEP	3.91535415	0.60762622	1812.33543481	41.52	0.0001
AMEX	-1.22963612	0.37652706	465.51139954	10.66	0.0011
b2	0.10300025	0.03893680	305.43976467	7.00	0.0082
b3	-0.15652621	0.01981532	2723.58949744	62.40	0.0001
b4	0.08311735	0.02364136	539.52034802	12.36	0.0004
b5	-0.03355265	0.00483916	2098.37897652	48.07	0.0001
b6	0.41124616	0.12406713	479.57847733	10.99	0.0009
b7	-0.08050773	0.01253145	1801.53096270	41.27	0.0001
b9	-0.03650795	0.01709104	199.16254894	4.56	0.0328
b13	0.32807158	0.08669080	625.11603563	14.32	0.0002
b14	0.79427456	0.21950601	571.50225638	13.09	0.0003
b15	0.59115523	0.07964616	2404.59999398	55.09	0.0001
b16	3.19845502	0.24085467	7697.32519250	176.35	0.0001
b18	-1.42653417	0.17118599	3031.07999555	69.44	0.0001
b25	0.01724522	0.00407020	783.56734033	17.95	0.0001
b26	3.20009608	0.30590579	4776.61379862	109.43	0.0001
b29	-0.02667654	0.01053299	279.97871183	6.41	0.0114
b36	0.32554288	0.03055205	4955.70331128	113.54	0.0001
b42	-0.10830050	0.02826773	640.69079345	14.68	0.0001
b43	-4).57545140	0.34335961	122.59941185	2.81	0.0939
b45	0.52301254	0.13801804	626.78990818	14.36	0.0002
b46	0.70626358	0.20089042	539.49155083	12.36	0.0004
b51	6.09437368	2.54847431	249.61295637	5.72	0.0169
b58	0.97002338	0.15791111	1647.05653562	37.73	0.0001
LIFO	-0.72751176	0.41843799	131.97956537	3.02 .	0.0822
b100	-0.02555128	0.00613831	756.30574037	17.33	0.0001
b110	0.31335071	1).06470018	1023.86352645	23.46	0.0001
b113	-0.10893304	0.01708445	1774.54385013	40.66	0.0001
b114	-0.14181570	0.03510298	712.41026380	16.32	0.0001
b115	0.18147780	0.11254526	113.49117511	2.60	0.1070
b116	0.05326183	0.01543853	519.50496632	11.90	0.0006
b128	-0.38796607	0.09799131	684.19813061	15.68	0.0001
b172	-0.36163715	0.14396646	275.41836976	6.31	0.0121
b181	-0.42856383	0.12376692	523.34893515	11.99	0.0005
b216	-0.36867370	0.13633243	319.19455281	7.31	0.0069
b235	0.18442734	0.03389376	1292.35113505	29.61	0.0001
b249	-0.05087730	0.01476810	518.04637925	11.87	0.0006
b278	1.96411658	0.96493458	180.84573524	4.14	0.0419
BONDA	1.50410075	0.53753888	341.74611403	7.83	0.0052
B0ND8	-0.98771186	0.44069364	219.25850401	5.02	0.0251
STObKA	3.53973212	0.45171972	2680.23065608	61.40	0.0001
b1_6	2.73035290	1.44317678	156.23127941	3.58	0.0587
b2-6	-5.37343011	1.58414795	502.20521004	11.51	0.0007
b3-6	-3.90427483	1.27260554	410.83045570	9.41	0.0022
${ }_{69}{ }^{-6}$	1.93985190	1.19381334	115.24810126	2.64	0.1043
b36_6	-1.82634033	0.66688412	327.36492869	7.50	0.0062
b13-172	0.03762920	0.00956326	675.78318313	15.48	0.0001
b14-172	-0.04998666	0.01633218	408.87372402	9.37	0.0022
b16-172	-0.08337222	0.02631535	438.12090814	10.04	0.0016
b9_216	-0.10367647	10.04684975	213.75452491	4.90	0.0270

Table (13) i Regression Results for PCY24 Without Ratios

Depenclent Variable PCY24 R-square $=0.77045687$

	DF	Sum of Squares	Mean Squara	F	Prob>F
Regression	37	562990.47453867	15215.95877132	185.88	0.0000
Error	2049	167732.42177734	81.86062556		
Total	2086	730722.89631601			

Variabla	Parameter Estimate	standard Error	Type II Sum of Squares	F	Rrob $>{ }^{\text {E }}$
Intercep	6.00541330	0.86517289	3944.16479523	48.18	0.0001
ANEX	-1.72099987	0.50320863	957.50394551	11.70	0.0006
b2	0.19575821	0.03787909	2186.33094817	26.71	0.0001
b3	-0.22947694	0.02375181	7641.16827881	93.34	0.0001
b5	-0.03520384	0.00646391	2428.08584525	29.66	0.0001
b8	-0.10152501	0.02119623	1878.03598010	22.94	0.0001
b9	-0.05759843	0.02003835	676.35177316	8.26	0.0041
b12	0.06695708	0.01932336	982.88551904	12.01	0.0005
b13	0.42713411	0.10156588	1447.79763379	17.69	0.0001
b15	.0.99977920	0.10426831	7526.24838461	91.94	0.0001
b16	4.25815666	0.30410008	16050.37753967	196.07	0.0001
b18	-1.91820267	0.22870806	5758.39048738	70.34	0.0001
b25	0.02794295	0.00559761	2039.92677366	24.92	0.0001
b26	2.77595696	0.38991644	4149.13369230	50.69	0.0001
b28	1.12436965	0.39085774	677.41664354	8.28	0.0041
b29	-0.04779085	0.01446734	893.27902683	10.91	0.0010
b30	0.23261372	0.12008902	307.14193533	3.75	0.0529
b36	0.30843066	0.03639342	5879.55528867	71.82	0.0001
b41	-0.06734157	0.02184756	777.74233388	9.50	0.0021
b42	-0.16470858	0.03838979	1506.87086395	18.41	0.0001
b45	0.48403090	0.19151659	522.88769454	6.39	0.0116
b46	1.07108509	0.26658045	1321.49772434	16.14	0.0001
b51	9.61483357	3.45652742	633.40077139	7.74	0.0055
b58	1.40958227	0.21175324	3627.40294886	44.31	0.0001
LIFO	-1.18799009	0.55964057	368.87763059	4.51	0.0339
b100	-0.02677402	0.00827143	857.71085692	10.48	0.0012
b110	0.51390572	0.08113959	3283.79717416	40.11	0.0001
b113	-0.06658166	0.00880036	4685.79774182	57.24	0.0001
b114	-0.09315224	0.04394679	367.79637825	4.49	0.0342
b128	-0.47271909	0.15279852	783.50726434	9.57	0.0020
b172	-0.50502875	0.19067525	574.27329958	7.02	0.0081
b181	-0.03444973	0.00549910	3212.65076651	39.25	0.0001
b235	0.35137468	0.03530259	8109.66523803	99.07	0.0001
b249	-0.06457191	0.02225391	689.20685900	8.42	0.0038
FORTUNE	-1.99736093	0.60726303	885.59360011	10.82	0.0010
BONDA	1.96129633	0.70414835	635.08690822	7.76	0.0054
STObIRA	2.62473892	0.68308914	1208.62764262	14.76	0.0001
STObRE	-1.21919504	0.51618847	456.67247726	5.58	0.0183

Table (14) : Regression Results for PCY24 with all Variables
Dependent Variable PCY24 R-square $=0.77827362$

	DE	Sum of Squares	Mean Square	F	Prob>E
Regresaion	42	557100.95928402	13264.30855438	162.13	0.0000
Erior	1940	158715.35819000	81.81204030		
Total	1982	715816.31747402			
	Parameter	standard	II		
Variable	Estimate	Error	Sum of Squares	F	Prob>F
INTERbER	6.51908203	1.04742147	3169.18193993	38.74	0.0001
ANEX	-1.52836155	0.53278341	673.23711430	8.23	0.0042
b2	0.25427598	0.03950827	3388.84548534	41.42	0.0001
b3	-0.18996369	0.02614063	4320.42365629	52.81	0.0001
b5	-0.03737277	0.00647584	2724.80965886	33.31	0.0001
b8	-0.14581894	0.02405340	3006.71335309	36.75	0.0001
b9	-0.05995900	0.02325845	543.70656857	6.65	0.0100
b13	0.37331981	0.11437759	871.56023324	10.65	0.0011
b14	0.76755561	0.28624505	588.24866491	7.19	0.0074
b15	0.95152853	0.10715170	6451.53016063	78.86	0.0001
b16	4.56325824	0.31649299	17007.44652918	207.88	0.0001
b18	-2.03153554	0.23193111	6276.94090858	76.72	0.0001
b25	0.02535814	0.00557261	1694.08349500	20.71	0.0001
b26	3.00168131	0.40937989	4398.38641246	53.76	0.0001
b28	1.36734181	0.42232539	857.58472024	10.48	0.0012
b29	-0.04039269	0.01420971	661.07776061	8.08	0.0045
b30	0.26250767	0.12023531	389.97533113	4.77	0.0291
b36	0.39927361	0.03815190	8960.37241071	109.52	0.0001
b42	-0.18327034	0.03854899	1849.16478488	22.60	0.0001
b45	0.63059274	0.18697692	930.54881560	11.37	0.0008
b46	1.02920468	0.26899846	1197.62579411	14.64	0.0001
b51	7.56266175	3.48529092	385.20197723	4.71	0.0301
b58	1.34459079	0.21474685	3207.33168764	39.20	0.0001
b100	-0.02705420	0.00830059	869.09873289	10.62	0.0011
b110	0.51704797	0.08253322	3210.85969297	39.25	0.0001
b113	-0.06899867	0.00885780	4964.17724023	60.68	0.0001
b114	-0.11431580	0.04467524	535.66845690	6.55	0.0106
b128	-0.70141590	0.16321993	1510.85256976	18.47	0.0001
b172	-0.51245729	0.19150610	585.82423441	7.16	0.0075
b181	-0.03026852	0.00527377	2694.98926068	32.94	0.0001
b235	0.28737045	0.03462039	5636.86492072	68.90	0.0001
b249	-0.06501065	0.02141884	753.69262958	9.21	0.0024
FORTUNE	-2.04872098	0.61363741	911.92515414	11.15	0.0009
BORIDA	1.34666210	0.74571458	266.80209145	3.26	0.0711
BONDE	-1.08855553	0.61284478	258.11747928	3.16	0.0759
stobra	3.58095881	0.62175616	2713.78655994	33.17	0.0001
b1_6	5.27632787	1.92954694	611.74450824	7.48	0.0063
b2-6	-6.50291457	2.15996124	741.55164560	9.06	0.0026
b3-6	-4.99835089	1.67584353	727.78612502	8.90	0.0029
b9-6	2.69349476	1.61308026	228.10643666	2.79	0.0951
b36_6	-1.83151312	0.89652315	341.43990068	4.17	0.0412
b16-172	-0.09891454	0.03549466	635.34771395	7.77	0.0054
b9_216	-0.10067614	0.06383544	203.49164305	2.49	0.1149

Table (15): Regression Results for PC199 Without Ratios

Dependent Variable pC199 R-square $=0.76100416$

	DF	Sum of Squares	Man Square	F	Prob>e
Regression	36	568309.61449951	15786.37818054	181.32	0.0000
Error	2050	178479.48732940	87.06316455		
Total	2086	746789.10182891			
	Paramater	Standard	Type II		
Variable	Estimate	Error	Sum of Squares	F	Prob>E
Intercer	8.40542401	0.94155684	6938.42049469	79.69	0.0001
AMEX	-2.14643733	0.51864128	1491.20282271	17.13	0.0001
FYRD	-2.22114982	0.45964627	2033.02483463	23.35	0.0001
b2	0.14543248	0.04546657	890.78480077	10.23	0.0014
b3	-0.23399523	0.02514954	7536.82444518	86.57	0.0001
b4	0.07846418	0.02998786	596.05483311	6.85	0.0089
b5	-0.03990443	0.00666648	3119.49199463	35.83	0.0001
b8	-0.09645286	0.01960374	2107.59247489	24.21	0.0001
b9	-0.04580221	0.02062762	429.24896722	4.93	0.0265
b13	0.43309168	0.10623175	1447.05648356	16.62	0.0001
b15	0.84948566	0.10367686	5844.97787200	67.13	0.0001
bl 6	4.51584504	0.31743439	17619.94582206	202.38	0.0001
b18	-1.91336244	0.23505101	5769.05537449	66.25	0.0001
b25	0.02864947	0.00571834	2185.38214843	25.10	0.0001
b26	3.09361656	0.39228773	5414.49515539	62.19	0.0001
b28	1.15750902	0.40392501	714.95997911	8.21	0.0042
b29	-0.05384638	0.01453756	1194.44109344	13.72	0.0002
b36	0.35506260	0.03562270	8649.49128996	99.35	0.0001
b42	-0.20031152	0.03933163	2258.19990032	25.94	0.0001
b45	0.75055734	0.19252306	1323.23412406	15.20	0.0001
b46	1.06298077	0.27230143	1326.73876049	15.24	0.0001
b51	10.31508508	3.56277363	729.79959693	8.38	0.0038
b58	1.21605793	0.21727883	2727.14456186	31.32	0.0001
LIFO	-1.44523097	0.57508414	549.85247165	6.32	0.0120
b100	-0.02383009	0.00850742	683.10917078	7.85	0.0051
b108	0.24013362	0.13068049	293.98072613	3.38	0.0663
b110	0.45238910	0.08224945	2633.86012390	30.25	0.0001
b113	-0.06914758	0.00885026	5314.67472375	61.04	0.0001
b114	-0.12037534	0.04524388	616.29664396	7.08	0.0079
b172	-0.35976791	0.19681678	290.90756876	3.34	0.0677
b181	-0.02292327	0.00498397	1841.77848571	21.15	0.0001
b235	0.26673485	0.03400801	5355.88892323	61.52	0.0001
b249	-0.04095757	0.02019443	358.12892467	4.11	0.0427
FORTUNE	-2.11056263	0.62052150	1007.20359083	11.57	0.0007
BONDA	2.37587158	0.72454576	936.15709554	10.75	0.0011
STObRA	2.64094762	0.70605173	1218.09450394	13.99	0.0002
STObRB	-1.39051552	0.53807427	581.43568202	6.68	0.0098

Table (16) : Regression Results for PC199 with All Variables

Dependent Variable PC199

	DF
Regression	45
Error	1937
Total	1982

Variable	Paramater Estimate	standard Error
INTERbEP	11.33009998	1.16583583
AMEX	-1.70073305	0.54533541
FYRD	-2.98812170	0.48166782
b2	0.20170567	0.05375338
b3	-0.18939926	0.02788868
b4	0.06061203	0.03322763
b5	-0.03869728	0.00676553
b8	-0.14081848	0.02488742
b9	-0.05189228	0.02188926
b13	0.35254030	0.11987964
b14	0.66949098	0.29844365
b15	0.93588010	0.11049606
b16	4.67159716	0.33132829
b18	-2.05227110	0.23838374
b25	0.02650761	0.00578565
b26	3.08053415	0.42744264
b28	1.50206341	0.43724798
b29	.-0.04779239	0.01473937
b30	0.23896918	0.12686442
b36	0.37994992	0.03745992
b42	-0.20317324	0.03963110
b45	0.72919316	0.19322370
b46	1.00071884	0.27820884
b51	8.46993994	3.58487210
b58	1.21530894	0.22160204
b100	-0.02631714	0.00855067
b108	0.22736860	0.13333665
b110	0.50632663	0.08480303
b113	-0.06793092	0.00913958
b114	-0.12802144	0.04612271
b128	-0.59364783	0.16836461
b172	-0.42217187	0.19834054
b181	-0.03161570	0.00536699
b235	0.28151359	0.03777224
b249	-0.06557337	0.02200156
FORTUNE	-2.36108181	0.63517314
BOADA	1.89419285	0.76669176
BORDB	-0.99881886	0.62974492
STObka	2.75572426	0.72633342
sTObKB	-1.02895949	0.55673193
b1 6	4.31842759	2.08208644
b2-6	-6.66373638	2.23378104
b3-6	-6.81513427	1.81386639
b216_6	-2.69838420	1.26085408
b16_172	-0.09866104	0.03646093
b172_216	0.36329901	0.22800402

Type II Sum of Squares
8146.37774407 838.91268834 3319.50372500 1214.49728641 3978.07069935 287.00589661 2821.81677660 2762.41316746 484.74690475 745.93074681 434.04689044 6187.54952271
17146.89878922
6392.75477919
1810.54478969
4479.89901273
1017.87109055 906.84257714 306.03843146
8873.41798110
2266.90181601
1228.38993637
1115.97420498 481.48769280 2594.16591687 817.05016034 250.80360258
3074.75618622
4764.90228885 664.51943375
1072.32891890 390.77563580
2993.06563380
4790.98927099 766.16061561
1191.81727811 526.47609339 216.97815086
1241.57034004 294.62945116 371.04418892 767.58463697
1217.61533433 395.04791549 631.55002397 218.98545725

E	Prob>F
145.23	0.0000

F Prob>F

94.45	0.0001
9.73	0.0018
38.49	0.0001
14.08	0.0002
46.12	0.0001
3.33	0.0683
32.72	0.0001
32.02	0.0001
5.62	0.0179
8.65	0.0033
5.03	0.0250
71.74	0.0001
198.80	0.0001
74.12	0.0001
20.99	0.0001
51.94	0.0001
11.80	0.0006
10.51	0.0012
3.55	0.0598
102.88	0.0001
26.28	0.0001
14.24	0.0002
12.94	0.0003
5.58	0.0182
30.08	0.0001
9.47	0.0021
2.91	0.0883
35.65	0.0001
55.24	0.0001
7.70	0.0056
12.43	0.0004
4.53	0.0334
34.70	0.0001
55.55	0.0001
8.88	0.0029
13.82	0.0002
6.10	0.0136
2.52	0.1129
14.39	0.0002
3.42	0.0647
4.30	0.0382
8.90	0.0029
14.12	0.0002
4.58	0.0325
7.32	0.0069
2.54	0.1112

[^0]: ${ }^{2}$ Arguably, equating anest prices to their expected discounted future earnings in not a formal model of inveator behavior but rather a condition for removal of arbitrage opportunitien, i.e., the violation of this relation aigmaln the exiatence of profit opportunitien and rational inventors would take edvantage of auch opportuaities without regards for the characteristice of the underlying anet.
 ${ }^{2}$ The words attribute and characteristic will be used interchangenbly. Quality is acoumed to be objectively meanrable. Attributes provida sigmaln about the provpects of an anet's future pricen and returna.

[^1]: For a mummary of thin literature eee Scoffer [101] and Reo et al. [88].
 4Sed [105] and raferences thervin. Capon, Farley, and Hoenis [10] provide a complate nurvey of the economic literature on the link between meanires of a firm's economic performance end ite characteriatice.

[^2]: ${ }^{5}$ For a recent survey of thin literature see Hanemann [38].

[^3]: ${ }^{6}$ In principle, civen the the attributen of an aset and thair mesociated market value it In poesible to identify mispriced recurities. This is the cenne in which information about ettributen can aid in portfolio deciaion.

[^4]: ${ }^{7}$ Golden parachutes are a good example of incentive structures which unduly favor the management.

[^5]: In chapter 4, I show that the attribute model in muficiently ceneral to neat a variaty of portfollo choice modelf. Because of thie property the model providen waluable pedagogical device for understerding the existins models in finance and accounting.

[^6]: ${ }^{9}$ The treatment here hat benefited from the reviow of this literature found in Haneman [36] and Lalirance [58].

[^7]: ${ }^{10}$ In the remainder of the dimertation upper case latters will be used to refer to vectors and nets and lower case letters will be used for elemente or mubeete.
 ${ }^{11}$ Since our aim is to explain the demand for a vary large mumber of aceets in terme of a much amaller number of common attributes we aevume $\mathrm{r}^{+}<\mathbf{n}$.

[^8]: ${ }^{12}$ Aseate whow unique attributes change shouid be regarded as distinet fimancial inetruments. The requirement of one unique attribute cen be trivially jurtified on the grounds that each asset hes at lentt a dpecific name.

[^9]: ${ }^{15}$ It seeme remanable that over shorter periode of time there is leas uncertainty amociated with the ettributes including the rate of return and that the uncertainty increasen with time. This in the atendard practica in continuous time finance where instantapeous returne are acsumed to be nosutochastic. Generalised Markovien processes such at the Brownian Motion procese are then uee to model time incroeding uncertainky.
 14A different way to include investor specific inputs uuch as time would be through the vector X aince labor itnelf is a marketed aseat. This however would be problemstic becmuse the dimenalonality of the problem will be enhenced without gaining any new inaighte. As it turas out, we may indirectly account for time epent in compoaing portfolion by creating at least a dichotomous variable which difforentiaten betwrean asceta that require little monitoring time such en certlicates of deponit and othern.

[^10]: ${ }^{14}$ This is much wenter than anmming $Y(\beta)$ to be convex.

[^11]: ${ }^{16}$ To see this note that the ARS is the 'upper contour ect' of $\boldsymbol{G}($.$) . By definition the upper$ contour eete of a quaniconcave fupction are convex, which is an asamption we involeed earliar.

[^12]: ${ }^{17}$ The sharea are conceve in sits and ofj is a linear function of ahares. Hence, ofig is aleo e conceva function of sin'

[^13]: see Krape [80] page 27. Note that when β are nor-stochactic the $\psi($. .) is an ordinal utility, otherwise the utility function will be cardinal [44].
 ${ }^{10}$ Also for any i and j euch that $a_{i}=z_{j}$ the function ni $_{i}-\Xi_{j}$ may be incorporated into the tranformation function $G($.$) . This will reduce the dimensionality of the problem.$

[^14]: ${ }^{20}$ see for example the models discunsed in [42]

[^15]: ${ }^{21}$ Note that tha inventmant choice may be a mbret a $\in X$ of aseta. In that eace the mumber of entete in a portfolio will also be an object of ehoice. I avold this interestinc problem for now by amuning thet non-mero amounte of all acets are chomen.

[^16]: ${ }^{33}$ Ansumptions on $w($.$) and G($.$) ingure thet tha accond order muficient conditions for a$ maximum are mat and the conatrainte are qualified.

[^17]: ${ }^{33}$ The quasi-concavity of $w^{*}($.$) in an important property for obtelning a well behaved$ colution to utility maximanation. This property is eatablighed by the lemme in Appendix A.

[^18]: 24The terminal wealth may be conmuned in ite entirety at that time or at the end of period the investor could colve ${ }^{4}$ one period problem \#gain.

[^19]: ${ }^{71}$ Economic modele of inventor behavior are surveyed in chapter 4

[^20]: ${ }^{24}$ Recall that the price of the consumption good is the mumeralre and therefore $I I$ is menarta selative to this defittor.

[^21]: ${ }^{37}$ Ar in CF and other atudies, terma with Π^{2} have been dropped. Hence the mearure in 3.3.2 is only an approximation to true II.

[^22]: ${ }^{24}$ Keeney and Raifia [51] provide a good dincumion of other objectives raleed egreinat the edditive utility functiong.

[^23]: ${ }^{29}$ Different vernions of this model heve been exteneively diccused in the seminel worke of Rubinatain[96].
 ${ }^{30}$ For exposition purposes, the utility function was represented in edditive form. This rapresentetion insures that the state preference modal is conaistent with the expected utility model: i.e. f, may be choeen to sum to unity (probebilities) and the u ()'s are simply subutility functions. This is not necestary for our analysis.

[^24]: In this modal an averaion to riak is equivalent to an averaion to variance. When the utility function is quadratic or the distribution of asset pricen is multivariate normal, the mean-variance model is consistent with the expected utility model.

[^25]: FThe diecusaion here generalisee to Broeden's (1904) many conaumption goode modal at well.

[^26]: ${ }^{18}$ Cornell (1979) criticised Breeden'e model. I ahould cite thin here though his criticitur hae no relevence for our purpoes.

[^27]: ${ }^{24}$ A liat of attributes can be provided and participanta may be aaked to select attributea which effect anat pricea. Uning the selected attributes and regreasion analyala the shadow cont of attributes may be eatimated. There are obviounly many other ponsible survey deaigna,
 ${ }^{35}$ In fact, knowledge of true (objective) rink may play little role in consumption decilione if individuale do not percelve a particular riak as algnificant (Slovic, at al.[106]). Aleo Viscual [111] has ahown that, in certain enses (e.E., cigaretten), even upwardly biased perceptions of the actual riak may not influence purchase behnvior.

[^28]: ${ }^{26}$ Sophinticsted techniques for obtaining solutions to monlinear models are divcused in Teuchen and Husey [108].
 ${ }^{3}$ Nelson [81] diecumes heteroncedanticity in time ecries teat of aset pricing modele.

[^29]: ${ }^{31}$ For a brief discumaion of these teste nee [45, 113].

[^30]: ${ }^{39}$ See Jecklin [43] for related referencee.

[^31]: ${ }^{40}$ However, this variable in negative and highly aignificant for other regreasiona, particularly for price on clowe of firm't fecal year (PC199). Other motivation for uning thin variable may be found in Korajcayk [54] and Keim [B2].

[^32]: ${ }^{11}$ Groen and Kierman [32] dincues the implication of Multicollinearity in anet pricing modele.

[^33]: ${ }^{63}$ The resulte regerding the exchange effect, B25 and b28 confirm the theoretical relatione arcested in the modele of Brennan and Hughes [17] Rydqviat [P9], Harris and Raviv [37] and Mayer [76].

